I have a large table that I run queries like select date_att > date '2001-01-01' on regularly. I'm trying to increase the speed of these queries by clustering the table on date_att, but when I run those queries through explain analyze it still chooses to sequentially scan the table, even on queries as simple as SELECT date_att from table where date_att > date '2001-01-01'. Why is this the case? I understand that since the query returns a large portion of the table, the optimizer will ignore the index, but since the table is clustered by that attribute, shouldn't it be able to really quickly binary search through the table to the point where date > '2001-01-01' and return all results after that? This query still takes as much time as without the clustering.
It seems like you are confusing two concepts:
PostgreSQL clustering of a table
Clustering a table according to an index in PostgreSQL aligns the order of table rows (stored in a heap table) to the order in the index at the time of clustering. From the docs:
Clustering is a one-time operation: when the table is subsequently updated, the changes are not clustered. http://www.postgresql.org/docs/9.3/static/sql-cluster.html
Clustering potentially (often) improves query speed for range queries because the selected rows are stored nearby in the heap table by coincidence. There is nothing that guarantees this order! Consequently the optimizer cannot assume that it is true.
E.g. if you insert a new row that fulfills your where clause it might be inserted at any place in the table — e.g. where rows for 1990 are stored. Hence, this assumtion doesn't hold true:
but since the table is clustered by that attribute, shouldn't it be able to really quickly binary > search through the table to the point where date > '2001-01-01' and return all results after that?
This brings us to the other concept you mentioned:
Clustered Indexes
This is something completely different, not supported by PostgreSQL at all but by many other databases (SQL Server, MySQL with InnoDB and also Oracle where it is called 'Index Organized Table').
In that case, the table data itself is stored in an index structure — there is no separate heap structure! As it is an index, the order is also maintained for each insert
/update
/delete
. Hence your assumption would hold true and indeed I'd expect the above mentioned database to behave as you would expect it (given the date
column is the clustering key!).
Hope that clarifies it.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With