I have several counters in an application I am building, as am trying to get them to be dynamically created by the application as required.
For a simplistic example, if someone types a word into a script it should return the number of times that word has been entered previously. Here is an example of sql that may be executed if they typed the word example.
CREATE SEQUENCE IF NOT EXISTS example START WITH 1;
SELECT nextval('example')
This would return 1
the first time it ran, 2
the second time, etc.
The problem is when 2 people click the button at the same time. First, please note that a lot more is happening in my application than just these statements, so the chances of them overlapping is much more significant than it would be if this was all that was happening.
1> BEGIN;
2> BEGIN;
1> CREATE SEQUENCE IF NOT EXISTS example START WITH 1;
2> CREATE SEQUENCE IF NOT EXISTS example START WITH 1; -- is blocked by previous statement
1> SELECT nextval('example') -- returns 1 to user.
1> COMMIT; -- unblocks second connection
2> ERROR: duplicate key value violates unique constraint
"pg_type_typname_nsp_index"
DETAIL: Key (typname, typnamespace)=(example, 109649) already exists.
I was under the impression that by using "IF NOT EXISTS", the statement should just be a no-op if it does exist, but it seems to have this race condition where that is not the case. I say race condition because if these two are not executed at the same time, it works as one would expect.
I have noticed that IF NOT EXISTS
is fairly new to postgres, so maybe they haven't worked out all of the kinks yet?
EDIT: The main reason we were considering doing things this way was to avoid excess locking. The thought being that if two people were to increment at the same time, using a sequence would mean that neither user should have to wait for the other (except, as in this example, for the initial creation of that sequence)
The PostgreSQL Sequence is used as a Sequence object for creating the list of sequences. We have used the CREATE SEQUENCE command to create a new sequence number. In this section, we also understand how to create an ascending and descending sequence with the CREATE SEQUENCE.
The syntax to a view the properties of a sequence in SQL Server (Transact-SQL) is: SELECT * FROM sys. sequences WHERE name = 'sequence_name'; sequence_name.
Sequences are part of the database schema. If you find yourself modifying the schema dynamically based on the data stored in the database, you are probably doing something wrong. This is especially true for sequences, which have special properties e.g. regarding their behavior with respect to transactions. Specifically, if you increment a sequence (with the help of nextval
) in the middle of a transaction and then you rollback that transaction, the value of the sequence will not be rolled back. So most likely, this kind of behavior is something that you don't want with your data. In your example, imagine that a user tries to add word. This results in the corresponding sequence being incremented. Now imagine that the transaction does not complete for reason (e.g. maybe the computer crashes) and it gets rolled back. You would end up with the word not being added to the database but with the sequence being incremented.
For the particular example that you mentioned, there is an easy solution; create an ordinary table to store all the "sequences". Something like that would do it:
CREATE TABLE word_frequency (
word text NOT NULL UNIQUE,
frequency integer NOT NULL
);
Now I understand that this is just an example, but if this approach doesn't work for your actual use case, let us know and we can adjust it to your needs.
Edit: Here's how you the above solution works. If a new word is added, run the following query ("UPSERT" syntax in postgres 9.5+ only):
INSERT INTO word_frequency(word,frequency)
VALUES ('foo',1)
ON CONFLICT (word)
DO UPDATE
SET frequency = word_frequency.frequency + excluded.frequency
RETURNING frequency;
This query will insert a new word in word_frequency
with frequency 1, or if the word exists already it will increment the existing frequency by 1. Now what happens if two transaction try to do that at the same time? Consider the following scenario:
client 1 client 2
-------- --------
BEGIN
BEGIN
UPSERT ('foo',1)
UPSERT ('foo',1) <====
COMMIT
COMMIT
What will happen is that as soon as client 2 tries increment the frequency for foo (marked with the arrow above), that operation will block because the row was modified by a different transaction. When client 1 commits, client 2 will get unblocked and continue without any errors. This is exactly how we wanted it to work. Also note, that postgresql will use row-level locking to implement this behavior, so other insertions will not be blocked.
EDIT: The main reason we were considering doing things this way was to avoid excess locking. The thought being that if two people were to increment at the same time, using a sequence would mean that neither user should have to wait for the other (except, as in this example, for the initial creation of that sequence)
It sounds like you're optimizing for a problem that likely does not exist. Sure, if you have 100,000 simultaneous users that are only inserting rows (since a sequence will only be used then normally) there is the possibility of some contention with the sequence but realistically there will be other bottle necks long before the sequence gets in the way.
I'd advise you to first prove that the sequence is an issue. With a proper database design (which dynamic DDL is not) the sequence will not be the bottle neck.
As a reference, DDL is not transaction safe in most databases.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With