I have a table that looks like this.
> dput(theft_loc)
structure(c(13704L, 14059L, 14263L, 14450L, 14057L, 15503L, 14230L,
16758L, 15289L, 15499L, 16066L, 15905L, 18531L, 19217L, 12410L,
13398L, 13308L, 13455L, 13083L, 14111L, 13068L, 19569L, 18771L,
19626L, 20290L, 19816L, 20923L, 20466L, 20517L, 19377L, 20035L,
20504L, 20393L, 22409L, 22289L, 7997L, 8106L, 7971L, 8437L, 8246L,
9090L, 8363L, 7934L, 7874L, 7909L, 8150L, 8191L, 8746L, 8277L,
27194L, 25220L, 26034L, 27080L, 27334L, 30819L, 30633L, 10452L,
10848L, 11301L, 11494L, 11265L, 11985L, 11038L, 12104L, 13368L,
14594L, 14702L, 13891L, 12891L, 12939L), .Dim = c(7L, 10L), .Dimnames = structure(list(
c("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday"), c("BAYVIEW", "CENTRAL", "INGLESIDE",
"MISSION", "NORTHERN", "PARK", "RICHMOND", "SOUTHERN", "TARAVAL",
"TENDERLOIN")), .Names = c("", "")), class = "table")
I ran a chisq.test
and the results came back significant. I now want to run some pairwise tests to see where the significance lies. I tried to use the fifer
package and the chisq.post.test
function but i get an error that says out of workspace
.
What other ways can I run the multiple comparisons test?
This will work (try chisq.test
instead of the default fisher.test
(exact) in post hoc test):
(Xsq <- chisq.test(theft_loc)) # Prints test summary, p-value very small,
# Pearson's Chi-squared test
# data: theft_loc
# X-squared = 1580.1, df = 54, p-value < 2.2e-16 # reject null hypothesis for independence
library(fifer)
chisq.post.hoc(theft_loc, test='chisq.test')
with output
Adjusted p-values used the fdr method.
comparison raw.p adj.p
1 Sunday vs. Monday 0.0000 0.0000
2 Sunday vs. Tuesday 0.0000 0.0000
3 Sunday vs. Wednesday 0.0000 0.0000
4 Sunday vs. Thursday 0.0000 0.0000
5 Sunday vs. Friday 0.0000 0.0000
6 Sunday vs. Saturday 0.0000 0.0000
7 Monday vs. Tuesday 0.0000 0.0000
8 Monday vs. Wednesday 0.0000 0.0000
9 Monday vs. Thursday 0.0000 0.0000
10 Monday vs. Friday 0.0000 0.0000
11 Monday vs. Saturday 0.0000 0.0000
12 Tuesday vs. Wednesday 0.1451 0.1451
13 Tuesday vs. Thursday 0.0000 0.0000
14 Tuesday vs. Friday 0.0000 0.0000
15 Tuesday vs. Saturday 0.0000 0.0000
16 Wednesday vs. Thursday 0.0016 0.0017
17 Wednesday vs. Friday 0.0000 0.0000
18 Wednesday vs. Saturday 0.0000 0.0000
19 Thursday vs. Friday 0.0000 0.0000
20 Thursday vs. Saturday 0.0000 0.0000
21 Friday vs. Saturday 0.0000 0.0000
As we can see, all the pairwise tests except a couple are significant, we can use different p-value-correction
too (by changing the control
from default fdr
to bonferroni
).
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With