I have a dictionary as follows:
{'header_1': ['body_1', 'body_3', 'body_2'],
'header_2': ['body_6', 'body_4', 'body_5'],
'header_4': ['body_7', 'body_8'],
'header_3': ['body_9'],
'header_9': ['body_10'],
'header_10': []}
I would like to come up with a dataframe like this:
+----+----------+--------+
| ID | header | body |
+----+----------+--------+
| 1 | header_1 | body_1 |
+----+----------+--------+
| 2 | header_1 | body_3 |
+----+----------+--------+
| 3 | header_1 | body_2 |
+----+----------+--------+
| 4 | header_2 | body_6 |
+----+----------+--------+
| 5 | header_2 | body_4 |
+----+----------+--------+
| 6 | header_2 | body_5 |
+----+----------+--------+
| 7 | header_4 | body_7 |
+----+----------+--------+
Where blank items (such as for the key header_10 in the dict above) would receive a value of None. I have tried a number of varieties for df.loc such as:
for header_name, body_list in all_unique.items():
for body_name in body_list:
metadata.loc[metadata.index[-1]] = [header_name, body_name]
To no avail. Surely there must be a quick way in Pandas to append rows and autoincrement the index? Something similar to the SQL INSERT INTO statement only using pythonic code?
Use dict comprehension for add Nones for empty lists and then flatten for list of tuples:
d = {'header_1': ['body_1', 'body_3', 'body_2'],
'header_2': ['body_6', 'body_4', 'body_5'],
'header_4': ['body_7', 'body_8'],
'header_3': ['body_9'],
'header_9': ['body_10'],
'header_10': []}
d = {k: v if bool(v) else [None] for k, v in d.items()}
data = [(k, y) for k, v in d.items() for y in v]
df = pd.DataFrame(data, columns= ['a','b'])
print (df)
a b
0 header_1 body_1
1 header_1 body_3
2 header_1 body_2
3 header_2 body_6
4 header_2 body_4
5 header_2 body_5
6 header_4 body_7
7 header_4 body_8
8 header_3 body_9
9 header_9 body_10
10 header_10 None
Another solution:
data = []
for k, v in d.items():
if bool(v):
for y in v:
data.append((k, y))
else:
data.append((k, None))
df = pd.DataFrame(data, columns= ['a','b'])
print (df)
a b
0 header_1 body_1
1 header_1 body_3
2 header_1 body_2
3 header_2 body_6
4 header_2 body_4
5 header_2 body_5
6 header_4 body_7
7 header_4 body_8
8 header_3 body_9
9 header_9 body_10
10 header_10 None
If the dataset is too big, this solution would be slow, but it should still work.
for key in data.keys():
vals= data[key]
# Create temp df with data from a single key
t_df = pd.DataFrame({'header':[key]*len(vals),'body':vals})
# Append it to your full dataframe.
df = df.append(t_df)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With