I have a C++ program running on Linux in which a new thread is created to do some computationally expensive work independent of the main thread (The computational work completes by writing the results to files, which end up being very large). However, I'm getting relatively poor performance.
If I implement the program straightforward (without introducing other threads), it completes the task in roughly 2 hours. With the multi-threaded program it takes around 12 hours to do the same task (this was tested with only one thread spawned).
I've tried a couple of things, including pthread_setaffinity_np to set the thread to a single CPU (out of the 24 available on the server I'm using), as well as pthread_setschedparam to set the scheduling policy (I've only tried SCHED_BATCH). But the effects of these have so far been negligible.
Are there any general causes for this kind of problem?
EDIT: I've added some example code that I'm using, which is hopefully the most relevant parts. The function process_job() is what actually does the computational work, but it would be too much to include here. Basically, it reads in two files of data, and uses these to perform queries on an in-memory graph database, in which the results are written to two large files over a period of hours.
EDIT part 2: Just to clarify, the problem is not that I want to use threads to increase the performance of an algorithm I have. But rather, I want to run many instances of my algorithm simultaneously. Therefore, I expect the algorithm would run at a similar speed when put in a thread as it would if I didn't use multi-threads at all.
EDIT part 3: Thanks for the suggestions all. I'm currently doing some unit tests (seeing which parts are slowing down) as some have suggested. As the program takes a while to load and execute, it is taking time to see any results from the tests and therefore I apologize for late responses. I think the main point I wanted to clarify is possible reasons why threading could cause a program to run slowly. From what I gather from the comments, it simply shouldn't be. I'll post when I can find a reasonable resolution, thanks again.
(FINAL) EDIT part 4: It turns out that the problem was not related to threading after all. Describing it would be too cumbersome at this point (including the use of compiler optimization levels), but the ideas posted here were very useful and appreciated.
struct sched_param sched_param = {
sched_get_priority_min(SCHED_BATCH)
};
int set_thread_to_core(const long tid, const int &core_id) {
cpu_set_t mask;
CPU_ZERO(&mask);
CPU_SET(core_id, &mask);
return pthread_setaffinity_np(tid, sizeof(mask), &mask);
}
void *worker_thread(void *arg) {
job_data *temp = (job_data *)arg; // get the information for the task passed in
...
long tid = pthread_self();
int set_thread = set_thread_to_core(tid, slot_id); // assume slot_id is 1 (it is in the test case I run)
sched_get_priority_min(SCHED_BATCH);
pthread_setschedparam(tid, SCHED_BATCH, &sched_param);
int success = process_job(...); // this is where all the work actually happens
pthread_exit(NULL);
}
int main(int argc, char* argv[]) {
...
pthread_t temp;
pthread_create(&temp, NULL, worker_thread, (void *) &jobs[i]); // jobs is a vector of a class type containing information for the task
...
return 0;
}
Disadvantages. Depending on the design and architecture of the processor, simultaneous multithreading can decrease performance if any of the shared resources are bottlenecks for performance.
The first rule of thumb for fast multithreading: to achieve maximum speed, the threads should communicate or share common resources as little as possible.
The ultimate goal of multithreading is to increase the computing speed of a computer and thus also its performance. To this end, we try to optimize CPU usage. Rather than sticking with a process for a long time, even when it's waiting on data for example, the system quickly changes to the next task.
If you have plenty of CPU cores, and have plenty of work to do, it should not take longer to run in multithreaded than single threaded mode - the actual CPU time may be a fraction longer, but the "wall-clock time" should be shorter. I'm pretty sure that your code has some sort of bottleneck where one thread is blocking the other.
This is because of one or more of these things - I'll list them first, then go into detail below:
If there is a thread that takes a lock, and another thread wants to use the resource that is locked by this thread, it will have to wait. This obviously means the thread isn't doing anything useful. Locks should be kept to a minimum by only taking the lock for a short period. Using some code to identify if locks are holding your code, such as:
while (!tryLock(some_some_lock))
{
tried_locking_failed[lock_id][thread_id]++;
}
total_locks[some_lock]++;
Printing some stats of the locks would help to identify where the locking is contentious - or you can try the old trick of "Press break in the debugger and see where you are" - if a thread is constantly waiting for some lock, then that's what's preventing progress...
If two threads use [and update the value of it frequently] the same variable, then the two threads will have to swap "I've updated this" messages, and the CPU's have to fetch the data from the other CPU before it can continue with it's use of the variable. Since "data" is shared on a "per cache-line" level, and a cache-line is typically 32-bytes, something like:
int var[NUM_THREADS];
...
var[thread_id]++;
would classify as something called "false sharing" - the ACTUAL data updated is unique per CPU, but since the data is within the same 32-byte region, the cores will still have updated the same are of memory.
If two threads do a lot of memory reading and writing, the cache of the CPU may be constantly throwing away good data to fill it with data for the other thread. There are some techniques available to ensure that two threads don't run in "lockstep" on which part of cache the CPU uses. If the data is 2^n (power of two) and fairly large (a multiple of the cache-size), it's a good idea to "add an offset" for each thread - for example 1KB or 2KB. That way, when the second thread reads the same distance into the data region, it will not overwrite exactly the same area of cache that the first thread is currently using.
If two threads are reading or writing from/to the hard-disk, network card, or some other shared resource, this can lead to one thread blocking another thread, which in turn means lower performance. It is also possible that the code detects different threads and does some extra flushing to ensure that data is written in the correct order or similar, before starting work with the other thread.
It is also possible that there are locks internally in the code that deals with the resource (user-mode library or kernel mode drivers) that block when more than one thread is using the same resource.
This is a "catchall" for "lots of other things that can be wrong". If the result from one calculation in one thread is needed to progress the other, obviously, not a lot of work can be done in that thread.
Too small a work-unit, so all the time is spent starting and stopping the thread, and not enough work is being done. Say for example that you dole out small numbers to be "calculate if this is a prime" to each thread, one number at a time, it will probably take a lot longer to give the number to the thread than the calculation of "is this actually a prime-number" - the solution is to give a set of numbers (perhaps 10, 20, 32, 64 or such) to each thread, and then report back the result for the whole lot in one go.
There are plenty of other "bad design". Without understanding your code it's quite hard to say for sure.
It is entirely possible that your problem is none of the ones I've mentioned here, but most likely it is one of these. Hopefully this asnwer is helpful to identify the cause.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With