Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Polygon Touch detection Google Map API V2

I'm trying to figure out how best to do this, I have a map with one Polygon drawn on it. Since it doesn't seem as though the Google Maps API V2 has a touch detection on a Polygon. I was wonder if it is possible to detect whether the touch point is inside the Polygon? If so then how, my main goal is to outline a state on a map and when the user taps that state it will show more details inside a custom view. As of now I am able to capture the MapOnClick of the map but when the user taps inside the Polygon I want the polygon.getID() set on the Toast. I am a newbie so I apologize if I am not clear enough.

googleMap.setOnMapClickListener(new OnMapClickListener() 
    {
        public void onMapClick(LatLng point) 
        {
        boolean checkPoly = true;

        Toast.makeText(MainActivity.this,"The Location is outside of the Area", Toast.LENGTH_LONG).show();
        }    
     });
     }
     }
   catch (Exception e) {
         Log.e("APP","Failed", e);
     }    

Ok this is what I have semi-working so far

    private boolean rayCastIntersect(LatLng tap, LatLng vertA, LatLng vertB) {

    double aY = vertA.latitude;
    double bY = vertB.latitude;
    double aX = vertA.longitude;
    double bX = vertB.longitude;
    double pY = tap.latitude;
    double pX = tap.longitude;
     if (aY > bY) {
            aX = vertB.longitude;
            aY = vertB.latitude;
            bX = vertA.longitude;
            bX = vertA.latitude;
        }
    System.out.println("aY: "+aY+" aX : "+aX);
    System.out.println("bY: "+bY+" bX : "+bX);

     if (pX < 0) pX += 360;
        if (aX < 0) aX += 360;
        if (bX < 0) bX += 360;

        if (pY == aY || pY == bY) pY += 0.00000001;
        if ((pY > bY || pY < aY) || (pX > Math.max(aX, bX))) return false;
        if (pX < Math.min(aX, bX))

            return true;
//  }

    double m = (aX != bX) ? ((bY - aY) / (bX - aX)) : aX;
    double bee = (aX != pX) ? ((pY - aY) / (pX - aX)) : aX;
    double x = (pY - bee) / m;

    return x > pX;
}

}

The issue that I am having is the touch is true to the left of each polygon until it reaches another one. What's wrong with my algorithm that would cause this issue? Any help would be appreciated.

like image 548
Dwill Avatar asked Jan 18 '13 18:01

Dwill


2 Answers

The Google Maps Support library now has a static method that does this check for you:

PolyUtil.containsLocation(LatLng point, List<LatLng>polygon, boolean geodesic);

Although the docs don't mention it explicitly in the guide the method is there

Maps Support Library docs

like image 105
user1504495 Avatar answered Oct 16 '22 02:10

user1504495


Though user1504495 has answered in short as I have used it. But instead of using whole Map Utility Library Use this methods.

From your activity class pass params accordingly:

if (area.containsLocation(Touchablelatlong, listLatlong, true))
                isMarkerINSide = true;
            else
                isMarkerINSide = false;

and put following in a Separate class :

/**
     * Computes whether the given point lies inside the specified polygon.
     * The polygon is always cosidered closed, regardless of whether the last point equals
     * the first or not.
     * Inside is defined as not containing the South Pole -- the South Pole is always outside.
     * The polygon is formed of great circle segments if geodesic is true, and of rhumb
     * (loxodromic) segments otherwise.
     */
    public static boolean containsLocation(LatLng point, List<LatLng> polygon, boolean geodesic) {
        final int size = polygon.size();
        if (size == 0) {
            return false;
        }
        double lat3 = toRadians(point.latitude);
        double lng3 = toRadians(point.longitude);
        LatLng prev = polygon.get(size - 1);
        double lat1 = toRadians(prev.latitude);
        double lng1 = toRadians(prev.longitude);
        int nIntersect = 0;
        for (LatLng point2 : polygon) {
            double dLng3 = wrap(lng3 - lng1, -PI, PI);
            // Special case: point equal to vertex is inside.
            if (lat3 == lat1 && dLng3 == 0) {
                return true;
            }
            double lat2 = toRadians(point2.latitude);
            double lng2 = toRadians(point2.longitude);
            // Offset longitudes by -lng1.
            if (intersects(lat1, lat2, wrap(lng2 - lng1, -PI, PI), lat3, dLng3, geodesic)) {
                ++nIntersect;
            }
            lat1 = lat2;
            lng1 = lng2;
        }
        return (nIntersect & 1) != 0;
    }

    /**
     * Wraps the given value into the inclusive-exclusive interval between min and max.
     * @param n   The value to wrap.
     * @param min The minimum.
     * @param max The maximum.
     */
    static double wrap(double n, double min, double max) {
        return (n >= min && n < max) ? n : (mod(n - min, max - min) + min);
    }

    /**
     * Returns the non-negative remainder of x / m.
     * @param x The operand.
     * @param m The modulus.
     */
    static double mod(double x, double m) {
        return ((x % m) + m) % m;
    }

    /**
     * Computes whether the vertical segment (lat3, lng3) to South Pole intersects the segment
     * (lat1, lng1) to (lat2, lng2).
     * Longitudes are offset by -lng1; the implicit lng1 becomes 0.
     */
    private static boolean intersects(double lat1, double lat2, double lng2,
                                      double lat3, double lng3, boolean geodesic) {
        // Both ends on the same side of lng3.
        if ((lng3 >= 0 && lng3 >= lng2) || (lng3 < 0 && lng3 < lng2)) {
            return false;
        }
        // Point is South Pole.
        if (lat3 <= -PI/2) {
            return false;
        }
        // Any segment end is a pole.
        if (lat1 <= -PI/2 || lat2 <= -PI/2 || lat1 >= PI/2 || lat2 >= PI/2) {
            return false;
        }
        if (lng2 <= -PI) {
            return false;
        }
        double linearLat = (lat1 * (lng2 - lng3) + lat2 * lng3) / lng2;
        // Northern hemisphere and point under lat-lng line.
        if (lat1 >= 0 && lat2 >= 0 && lat3 < linearLat) {
            return false;
        }
        // Southern hemisphere and point above lat-lng line.
        if (lat1 <= 0 && lat2 <= 0 && lat3 >= linearLat) {
            return true;
        }
        // North Pole.
        if (lat3 >= PI/2) {
            return true;
        }
        // Compare lat3 with latitude on the GC/Rhumb segment corresponding to lng3.
        // Compare through a strictly-increasing function (tan() or mercator()) as convenient.
        return geodesic ?
                tan(lat3) >= tanLatGC(lat1, lat2, lng2, lng3) :
                mercator(lat3) >= mercatorLatRhumb(lat1, lat2, lng2, lng3);
    }

    /**
     * Returns tan(latitude-at-lng3) on the great circle (lat1, lng1) to (lat2, lng2). lng1==0.
     * See http://williams.best.vwh.net/avform.htm .
     */
    private static double tanLatGC(double lat1, double lat2, double lng2, double lng3) {
        return (tan(lat1) * sin(lng2 - lng3) + tan(lat2) * sin(lng3)) / sin(lng2);
    }

    /**
     * Returns mercator Y corresponding to latitude.
     * See http://en.wikipedia.org/wiki/Mercator_projection .
     */
    static double mercator(double lat) {
        return log(tan(lat * 0.5 + PI/4));
    }

    /**
     * Returns mercator(latitude-at-lng3) on the Rhumb line (lat1, lng1) to (lat2, lng2). lng1==0.
     */
    private static double mercatorLatRhumb(double lat1, double lat2, double lng2, double lng3) {
        return (mercator(lat1) * (lng2 - lng3) + mercator(lat2) * lng3) / lng2;
    } 
like image 45
Sagar Shah Avatar answered Oct 16 '22 02:10

Sagar Shah