This is my first attempt at playing with Pandas library after attending Wesley's tutorial at pycon.
After poking around a bit with the dataframe I am glad I was able to massage the data in the way I wanted but having trouble in plotting it. I guess it also points to my naiveness with the matplotlib library.
What I have is pandas Series object with the following data. I would like to plot as a barplot with col 1 ('file') as the labels oriented vertically.
sample data here:
http://pastebin.com/y2w0uJPQ
Plotting Bar charts using pandas DataFrame: The bar() method draws a vertical bar chart and the barh() method draws a horizontal bar chart. The bar() and barh() of the plot member accepts X and Y parameters. By default, X takes the index of the DataFrame and all the numeric columns are drawn as Y.
A horizontal bar plot is a plot that presents quantitative data with rectangular bars with lengths proportional to the values that they represent. A bar plot shows comparisons among discrete categories. One axis of the plot shows the specific categories being compared, and the other axis represents a measured value.
I've just implemented a stacked bar plot function in the git repository for pandas, will be part of the upcoming 0.7.3 release:
In [7]: df
Out[7]:
a b c
0 0.425199 0.564161 0.727342
1 0.174849 0.071170 0.679178
2 0.224619 0.331846 0.468959
3 0.654766 0.189413 0.868011
4 0.617331 0.715088 0.387540
5 0.444001 0.069016 0.417990
6 0.203908 0.689652 0.227135
7 0.382930 0.874078 0.571042
8 0.658687 0.493955 0.245392
9 0.758986 0.385871 0.455357
In [8]: df.plot(kind='barh', stacked=True)
It properly handles positive and negative values (stacking negative values below the origin and positive values above)
Recently I have programmed a function to do something very similar. Here you have a simplified version:
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure
from matplotlib.colors import colorConverter
import matplotlib.lines as mlines
import matplotlib
def _add_legend(axes):
'It adds the legend to the plot'
box = axes.get_position()
axes.set_position([box.x0, box.y0, box.width * 0.9, box.height])
handles, labels = axes.get_legend_handles_labels()
# sort by the labels
handel_lables = sorted(zip(handles, labels), key=operator.itemgetter(1))
handles, labels = zip(*handel_lables)
axes.legend(handles, labels, bbox_to_anchor=(1.05, 1), loc=2,
borderaxespad=0., prop={'size':LEGEND_FONT_SIZE},
fancybox=True, numpoints=1)
def stacked_bars(matrix, fhand, bar_colors=None):
'It draws stacked columns'
bar_width = 1
fig = Figure(figsize=FIGURE_SIZE)
canvas = FigureCanvas(fig)
axes = fig.add_subplot(111)
nrows, ncols = matrix.shape
bar_locs = range(0, nrows)
cum_heights = numpy.zeros(nrows)
for col_index, (col_name, column) in enumerate(matrix.iteritems()):
color = bar_colors[col_index] if bar_colors is not None else None
values = column.values
axes.bar(bar_locs, values, color=color, bottom=cum_heights,
width=bar_width, label=col_name)
cum_heights += values
min_y, max_y = axes.get_ylim()
#bar labels
axes.set_xticks([l + bar_width * 0.4 for l in bar_locs])
labels = axes.set_xticklabels([str(l) + ' ' for l in matrix.index.values],
fontsize=AXIS_LABELS_FONT_SIZE)
for label in labels:
label.set_rotation('vertical')
_add_legend(axes)
canvas.print_figure(fhand, format=_get_format_from_fname(fhand.name))
fhand.flush()
I hope it helps you to get an idea.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With