I have a data file in NumPy array, I would like to view the 3D-image. I am sharing an example, where I can view 2D image of size (100, 100), this is a slice in xy-plane at z = 0.
import numpy as np
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
X, Y, Z = np.mgrid[-10:10:100j, -10:10:100j, -10:10:100j]
T = np.sin(X*Y*Z)/(X*Y*Z)
T=T[:,:,0]
im = plt.imshow(T, cmap='hot')
plt.colorbar(im, orientation='vertical')
plt.show()
How can I view a 3D image of the data T of shape (100, 100, 100)?
Images are an easier way to represent the working model. In Machine Learning, Python uses the image data in the format of Height, Width, Channel format. i.e. Images are converted into Numpy Array in Height, Width, Channel format.
Display Numpy array as Image We import numpy library to create Numpy array and PIL library to add support for display and saving. Create a sample Numpy array and convert the array to PIL format using fromarray() function of PIL. This will open a new terminal window where the image will be displayed.
I think the main problem is, that you do have 4 informations for each point, so you are actually interessted in a 4-dimensional object. Plotting this is always difficult (maybe even impossible). I suggest one of the following solutions:
You change the question to: I'm not interessted in all combinations of x,y,z, but only the ones, where z = f(x,y)
You change the accuracy of you plot a bit, saying that you don't need 100 levels of z, but only maybe 5, then you simply make 5 of the plots you already have.
In case you want to use the first method, then there are several submethods:
A. Plot the 2-dim surface f(x,y)=z
and color it with T
B. Use any technic that is used to plot complex functions, for more info see here.
The plot given by method 1.A (which I think is the best solution) with z=x^2+y^2
yields:
I used this programm:
import numpy as np
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import matplotlib as mpl
X, Y = np.mgrid[-10:10:100j, -10:10:100j]
Z = (X**2+Y**2)/10 #definition of f
T = np.sin(X*Y*Z)
norm = mpl.colors.Normalize(vmin=np.amin(T), vmax=np.amax(T))
T = mpl.cm.hot(T) #change T to colors
fig = plt.figure()
ax = fig.gca(projection='3d')
surf = ax.plot_surface(X, Y, Z, facecolors=T, linewidth=0,
cstride = 1, rstride = 1)
plt.show()
The second method gives something like:
With the code:
norm = mpl.colors.Normalize(vmin=-1, vmax=1)
X, Y= np.mgrid[-10:10:101j, -10:10:101j]
fig = plt.figure()
ax = fig.gca(projection='3d')
for i in np.linspace(-1,1,5):
Z = np.zeros(X.shape)+i
T = np.sin(X*Y*Z)
T = mpl.cm.hot(T)
ax.plot_surface(X, Y, Z, facecolors=T, linewidth=0, alpha = 0.5, cstride
= 10, rstride = 10)
plt.show()
Note: I changed the function to T = sin(X*Y*Z)
because dividing by X*Y*Z
makes the functions behavior bad, as you divide two number very close to 0.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With