I have a dataframe 'df' with 36 columns, these columns are plotted onto a single plotly chart and displayed in html format using the code below.
import plotly.offline as py
import plotly.io as pio
pio.write_html(py.offline.plot([{
'x': df.index,
'y': df[col],
'name': col
}for col in trend_data.columns], filename=new_file_path))
I want to iterate through each column and create a subplot for each one. I have tried;
from plotly.subplots import make_subplots
sub_titles = df.columns()
fig = make_subplots(rows=6, cols=6, start_cell="bottom-left", subplot_titles=sub_titles)
for i in df.columns:
fig.add_trace(i)
I created 6 rows and columns as that would give 36 plots and tried to use the header names as subplot titles but I get a ValueError stating it was expecting a 2d list of dictionaries.
Also, I have tried to add subplot titles by;
sub_titles = list(df)
fig = py.subplots.make_subplots(rows=6, cols=6, sub_titles=sub_titles)
This also returns an error. Any help is appreciatted.
Table and Right Aligned Plots. In Plotly there is no native way to insert a Plotly Table into a Subplot. To do this, create your own Layout object and defining multiple xaxis and yaxis to split up the chart area into different domains.
Simple Subplot Figures with subplots are created using the make_subplots function from the plotly. subplots module. Here is an example of creating a figure that includes two scatter traces which are side-by-side since there are 2 columns and 1 row in the subplot layout.
iplot is interactive plot. Plotly takes Python code and makes beautiful looking JavaScript plots. They let you have a lot of control over how these plots look and they let you zoom, show information on hover and toggle data to be viewed on the chart. Tutorial.
Plot:
Code:
# imports
from plotly.subplots import make_subplots
import plotly.graph_objs as go
import pandas as pd
import numpy as np
# data
np.random.seed(123)
frame_rows = 50
n_plots = 36
frame_columns = ['V_'+str(e) for e in list(range(n_plots+1))]
df = pd.DataFrame(np.random.uniform(-10,10,size=(frame_rows, len(frame_columns))),
index=pd.date_range('1/1/2020', periods=frame_rows),
columns=frame_columns)
df=df.cumsum()+100
df.iloc[0]=100
# plotly setup
plot_rows=6
plot_cols=6
fig = make_subplots(rows=plot_rows, cols=plot_cols)
# add traces
x = 0
for i in range(1, plot_rows + 1):
for j in range(1, plot_cols + 1):
#print(str(i)+ ', ' + str(j))
fig.add_trace(go.Scatter(x=df.index, y=df[df.columns[x]].values,
name = df.columns[x],
mode = 'lines'),
row=i,
col=j)
x=x+1
# Format and show fig
fig.update_layout(height=1200, width=1200)
fig.show()
Addition: 1-column solution:
Code:
# imports
from plotly.subplots import make_subplots
import plotly.graph_objs as go
import pandas as pd
import numpy as np
# data
np.random.seed(123)
frame_rows = 50
frame_columns = ['V_'+str(e) for e in list(range(1,37))]
df = pd.DataFrame(np.random.uniform(-8,10,size=(frame_rows, len(frame_columns))),
index=pd.date_range('1/1/2020', periods=frame_rows),
columns=frame_columns)
df=df.cumsum()+100
df.iloc[0]=100
# plotly setup
plot_rows=6
plot_cols=6
lst1 = list(range(1,plot_rows+1))
lst2 = list(range(1,plot_cols+1))
fig = make_subplots(rows=36, cols=1, subplot_titles=df.columns, insets=[{'l': 0.1, 'b': 0.1, 'h':1}])
# add traces
x = 1
for i in lst1:
for j in lst2:
#print(str(i)+ ', ' + str(j))
fig.add_trace(go.Scatter(x=df.index, y=df[df.columns[x-1]].values,
name = df.columns[x-1],
mode = 'lines',
),
row=x,
col=1)
x=x+1
fig.update_layout(height=12000, width=1200)
fig.show()
Plots:
See documentation on how to use subplots. This could work:
UPDATE including subplot titles
fig = py.subplots.make_subplots(rows=36, cols=1, subplot_titles=df.columns)
j = 1
for i in df.columns:
fig.add_trace(
go.Scatter(
{'x': df.index,
'y': df[i]}),
row=j, col=1)
j += 1
This results in the following plot (with my data):
df = pd.DataFrame(np.random.randint(5, size=(5, 3)), columns=['one', 'two', 'three'])
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With