I have 79 lat and lons that I have data for to plot on a Basemap in Python. I have an array of 79 numbers to go along with it that I would like to plot instead of a normal dot (i.e. I would like a "1" or a "2" to show up instead of a usual dot). I tried the plt.annotate
function, but that didn't work.
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
locs = np.genfromtxt('/Volumes/NO_NAME/Classwork/OK_vic_grid.txt')
lat = locs[:,1] # 79 values
lon = locs[:,2] # 79 values
m = Basemap(projection='stere',lon_0=-95,lat_0=35.,lat_ts=40,\
llcrnrlat=33,urcrnrlat=38,\
llcrnrlon=-103.8,urcrnrlon=-94)
X,Y = m(lon,lat)
m.drawcoastlines()
m.drawstates()
m.drawcountries()
m.drawmapboundary(fill_color='lightblue')
m.drawparallels(np.arange(0.,40.,2.),color='gray',dashes=[1,3],labels=[1,0,0,0])
m.drawmeridians(np.arange(0.,360.,2.),color='gray',dashes=[1,3],labels=[0,0,0,1])
m.scatter(X,Y)
????? (Want to plot an array "maxpc" which has 79 numbers that I want to plot the string of)
OK_vic_grid.txt:
1 33.75 -97.75
2 33.75 -97.25
3 33.75 -96.75
4 33.75 -96.25
5 33.75 -95.75
6 33.75 -95.25
7 33.75 -94.75
8 34.25 -99.75
9 34.25 -99.25
10 34.25 -98.75
11 34.25 -98.25
12 34.25 -97.75
13 34.25 -97.25
14 34.25 -96.75
15 34.25 -96.25
16 34.25 -95.75
17 34.25 -95.25
18 34.25 -94.75
19 34.75 -99.75
20 34.75 -99.25
21 34.75 -98.75
22 34.75 -98.25
23 34.75 -97.75
24 34.75 -97.25
25 34.75 -96.75
26 34.75 -96.25
27 34.75 -95.75
28 34.75 -95.25
29 34.75 -94.75
30 35.25 -99.75
31 35.25 -99.25
32 35.25 -98.75
33 35.25 -98.25
34 35.25 -97.75
35 35.25 -97.25
36 35.25 -96.75
37 35.25 -96.25
38 35.25 -95.75
39 35.25 -95.25
40 35.25 -94.75
41 35.75 -99.75
42 35.75 -99.25
43 35.75 -98.75
44 35.75 -98.25
45 35.75 -97.75
46 35.75 -97.25
47 35.75 -96.75
48 35.75 -96.25
49 35.75 -95.75
50 35.75 -95.25
51 35.75 -94.75
52 36.25 -99.75
53 36.25 -99.25
54 36.25 -98.75
55 36.25 -98.25
56 36.25 -97.75
57 36.25 -97.25
58 36.25 -96.75
59 36.25 -96.25
60 36.25 -95.75
61 36.25 -95.25
62 36.25 -94.75
63 36.75 -102.75
64 36.75 -102.25
65 36.75 -101.75
66 36.75 -101.25
67 36.75 -100.75
68 36.75 -100.25
69 36.75 -99.75
70 36.75 -99.25
71 36.75 -98.75
72 36.75 -98.25
73 36.75 -97.75
74 36.75 -97.25
75 36.75 -96.75
76 36.75 -96.25
77 36.75 -95.75
78 36.75 -95.25
79 36.75 -94.75
ax.scatter
and ax.text
both expect a single x, y point, rather than an array of locations.
Either will work perfectly fine, but you'll need to use a loop.
For example:
import numpy as np
import matplotlib.pyplot as plt
xy = np.random.random((5, 2))
text = ['A', 'B', 'C', 'D', 'E']
fig, ax = plt.subplots()
for (x,y), label in zip(xy, text):
ax.text(x, y, label, ha='center', size=20)
plt.show()
With basemap
, you'll need project your longitudes and latitudes into projected map coordinates (i.e. your X
and Y
arrays). For example (I'll also use annotate
here to offset the label by a few points):
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
num = 79
lat = 5 * np.random.random(num) + 33
lon = 10 * np.random.random(num) - 104
fig, ax = plt.subplots()
m = Basemap(projection='stere',lon_0=-95,lat_0=35.,lat_ts=40,
llcrnrlat=33,urcrnrlat=38,
llcrnrlon=-103.8,urcrnrlon=-94,
resolution='h', ax=ax)
X,Y = m(lon,lat)
m.drawcoastlines()
m.drawstates()
m.drawcountries()
m.drawmapboundary(fill_color='lightblue')
m.drawparallels(np.arange(0.,40.,2.),color='gray',dashes=[1,3],labels=[1,0,0,0])
m.drawmeridians(np.arange(0.,360.,2.),color='gray',dashes=[1,3],labels=[0,0,0,1])
ax.scatter(X,Y)
for i, (x, y) in enumerate(zip(X, Y), start=1):
ax.annotate(str(i), (x,y), xytext=(5, 5), textcoords='offset points')
plt.show()
On a side note, you might also consider using cartopy
instead of basemap. basemap
has been more or less completely superseded by cartopy
. Both are matplotlib-based mapping toolkits, cartopy
is just a lot nicer, i.m.o.. The map axes are true subclasses of Axes
, so there's no separate Basemap
object, it's a true Axes, instead. Furthermore, Cartopy has a few more features than basemap, and is typically faster, in my experience.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With