Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Plot Interactive Decision Tree in Jupyter Notebook

Is there a way to plot a decision tree in a Jupyter Notebook, such that I can interactively explore its nodes? I am thinking about something like this dt. This is an example from KNIME.

I have found https://planspace.org/20151129-see_sklearn_trees_with_d3/ and https://bl.ocks.org/ajschumacher/65eda1df2b0dd2cf616f and I know you can run d3 in Jupyter, but I have not found any packages, that do that.

like image 766
r0f1 Avatar asked Jun 08 '18 07:06

r0f1


People also ask

How do you implement a decision tree in Jupyter notebook?

You can use Scikit-learn's export_graphviz function for display the tree within a Jupyter notebook. For plotting tree, you also need to install graphviz and pydotplus. export_graphviz function converts decision tree classifier into dot file and pydotplus convert this dot file to png or displayable form on Jupyter.

Are Jupyter notebooks interactive?

Jupyter Notebook has support for many kinds of interactive outputs, including the ipywidgets ecosystem as well as many interactive visualization libraries.


2 Answers

Updated Answer with collapsible graph using d3js in Jupyter Notebook

Start of 1st cell in notebook

%%html <div id="d3-example"></div> <style>  .node circle {   cursor: pointer;   stroke: #3182bd;   stroke-width: 1.5px; }  .node text {   font: 10px sans-serif;   pointer-events: none;   text-anchor: middle; }  line.link {   fill: none;   stroke: #9ecae1;   stroke-width: 1.5px; } </style> 

End of 1st cell in notebook

Start of 2nd cell in notebook

%%javascript // We load the d3.js library from the Web. require.config({paths:     {d3: "http://d3js.org/d3.v3.min"}}); require(["d3"], function(d3) {   // The code in this block is executed when the   // d3.js library has been loaded.    // First, we specify the size of the canvas   // containing the visualization (size of the   // <div> element).   var width = 960,     height = 500,     root;    // We create a color scale.   var color = d3.scale.category10();    // We create a force-directed dynamic graph layout. //   var force = d3.layout.force() //     .charge(-120) //     .linkDistance(30) //     .size([width, height]);     var force = d3.layout.force()     .linkDistance(80)     .charge(-120)     .gravity(.05)     .size([width, height])     .on("tick", tick); var svg = d3.select("body").append("svg")     .attr("width", width)     .attr("height", height);  var link = svg.selectAll(".link"),     node = svg.selectAll(".node");    // In the <div> element, we create a <svg> graphic   // that will contain our interactive visualization.  var svg = d3.select("#d3-example").select("svg")   if (svg.empty()) {     svg = d3.select("#d3-example").append("svg")           .attr("width", width)           .attr("height", height);   } var link = svg.selectAll(".link"),     node = svg.selectAll(".node");   // We load the JSON file.   d3.json("graph2.json", function(error, json) {     // In this block, the file has been loaded     // and the 'graph' object contains our graph.  if (error) throw error; else     test(1); root = json;       test(2);       console.log(root);   update();      });     function test(rr){console.log('yolo'+String(rr));}  function update() {     test(3);   var nodes = flatten(root),       links = d3.layout.tree().links(nodes);    // Restart the force layout.   force       .nodes(nodes)       .links(links)       .start();    // Update links.   link = link.data(links, function(d) { return d.target.id; });    link.exit().remove();    link.enter().insert("line", ".node")       .attr("class", "link");    // Update nodes.   node = node.data(nodes, function(d) { return d.id; });    node.exit().remove();    var nodeEnter = node.enter().append("g")       .attr("class", "node")       .on("click", click)       .call(force.drag);    nodeEnter.append("circle")       .attr("r", function(d) { return Math.sqrt(d.size) / 10 || 4.5; });    nodeEnter.append("text")       .attr("dy", ".35em")       .text(function(d) { return d.name; });    node.select("circle")       .style("fill", color); }     function tick() {   link.attr("x1", function(d) { return d.source.x; })       .attr("y1", function(d) { return d.source.y; })       .attr("x2", function(d) { return d.target.x; })       .attr("y2", function(d) { return d.target.y; });    node.attr("transform", function(d) { return "translate(" + d.x + "," + d.y + ")"; }); }           function color(d) {   return d._children ? "#3182bd" // collapsed package       : d.children ? "#c6dbef" // expanded package       : "#fd8d3c"; // leaf node }       // Toggle children on click. function click(d) {   if (d3.event.defaultPrevented) return; // ignore drag   if (d.children) {     d._children = d.children;     d.children = null;   } else {     d.children = d._children;     d._children = null;   }   update(); }     function flatten(root) {   var nodes = [], i = 0;    function recurse(node) {     if (node.children) node.children.forEach(recurse);     if (!node.id) node.id = ++i;     nodes.push(node);   }    recurse(root);   return nodes; }  }); 

End of 2nd cell in notebook

Contents of graph2.json

   {  "name": "flare",  "children": [   {    "name": "analytics"     },     {    "name": "graph"     }    ] } 

The graph enter image description here

Click on flare, which is the root node, the other nodes will collapse

enter image description here

Github repository for notebook used here: Collapsible tree in ipython notebook

References

  • Collapsible graph in d3.js
  • Networkx graph in notebook using d3.js

Old Answer

I found this tutorial here for interactive visualization of Decision Tree in Jupyter Notebook.

Install graphviz

There are 2 steps for this : Step 1: Install graphviz for python using pip

pip install graphviz 

Step 2: Then you have to install graphviz seperately. Check this link. Then based on your system OS you need to set the path accordingly:

For windows and Mac OS check this link. For Linux/Ubuntu check this link

Install ipywidgets

Using pip

pip install ipywidgets jupyter nbextension enable --py widgetsnbextension 

Using conda

conda install -c conda-forge ipywidgets 

Now for the code

from IPython.display import SVG from graphviz import Source from sklearn.datasets load_iris from sklearn.tree import DecisionTreeClassifier, export_graphviz from sklearn import tree from ipywidgets import interactive from IPython.display import display                                

Load the dataset, say for instance iris dataset in this case

data = load_iris()  #Get the feature matrix features = data.data  #Get the labels for the sampels target_label = data.target  #Get feature names feature_names = data.feature_names 

**Function to plot the decision tree **

def plot_tree(crit, split, depth, min_split, min_leaf=0.17):     classifier = DecisionTreeClassifier(random_state = 123, criterion = crit, splitter = split, max_depth = depth, min_samples_split=min_split, min_samples_leaf=min_leaf)     classifier.fit(features, target_label)      graph = Source(tree.export_graphviz(classifier, out_file=None, feature_names=feature_names, class_names=['0', '1', '2'], filled = True))      display(SVG(graph.pipe(format='svg'))) return classifier 

Call the function

decision_plot = interactive(plot_tree, crit = ["gini", "entropy"], split = ["best", "random"]  , depth=[1, 2, 3, 4, 5, 6, 7], min_split=(0.1,1), min_leaf=(0.1,0.2,0.3,0.5))  display(decision_plot) 

You will get the following the graph enter image description here

You can change the parameters interactively in the output cell by the chnaging the following values

enter image description here

Another decision tree on the same data but different parameters enter image description here

References :

  • Using ipywidgets to plot interactive decision trees
  • Plotting decision trees in python
  • ipywidgets
  • In case you get issues with Graphviz
  • scikit-learn issue :Improve decision tree plotting in Jupyter environment
like image 199
Gambit1614 Avatar answered Oct 05 '22 01:10

Gambit1614


1. In case you simply want to use D3 in Jupyter, here is a tutorial: https://medium.com/@stallonejacob/d3-in-juypter-notebook-685d6dca75c8

enter image description here

enter image description here

2. For building an interactive decision tree, here is another interesting GUI toolkit called the TMVAGui.

In this the code is just one-liner: factory.DrawDecisionTree(dataset, "BDT")

https://indico.cern.ch/event/572131/contributions/2315243/attachments/1343269/2023816/gsoc16_4thpresentation.pdf

like image 43
Ankita Mehta Avatar answered Oct 05 '22 02:10

Ankita Mehta