Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Pivot table and group by month

I have a DataFrame df as follows:

df = pd.DataFrame([["12", "10-01-2022", 'boot', "shoe", 100, 50],
                   ["211", "10-01-2022", 'sandal', "shoe", 210, 20],
                   ["321", "10-02-2022", 'boot', "shoe", 100, 45],
                   ["413", "10-02-2022", 'boot', "shoe", 100, 45],
                   ["15", "10-02-2022", 'dress', "cloth", 155, 95],
                   ["633", "10-03-2022", 'boot', "shoe", 75, 30],
                   ["247", "10-03-2022", 'boot', "shoe", 75, 30],
                   ["8787", "10-04-2022", 'boot', "shoe", 120, 45],
                   ["9232", "10-05-2022", 'shirt', "cloth", 75, 30],
                   ["12340", "10-05-2022", 'dress', "cloth", 175, 95 ]],
                  columns=["count", "date", "name", "category", "price", "revenue"])

I need to aggregate by month to see the sums of count, price and revenue as in:

|name  | category |Count                        | price                       | revenue            |      
|      |          | Jan | Feb | Mar | Apr | Mai | Jan | Feb | Mar | Apr | Mai |Jan | Feb | Mar | Apr | Mai |
|boot  | shoe     | 12  | 734 | 880 | 8787|  -  | 100 | 100 | 75  | 120 | -   | 50 | 45  | 30  | 45 |-|
|sandal| shoe     | 211 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
|dress | cloth    | -   | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
|shirt | cloth    | -   | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |

How can I do that?

like image 687
user188439 Avatar asked Nov 21 '25 18:11

user188439


1 Answers

Try this:

df = pd.DataFrame([["12", "10-01-2022", 'boot', "shoe", 100, 50],
                   ["211", "10-01-2022", 'sandal', "shoe", 210, 20],
                   ["321", "10-02-2022", 'boot', "shoe", 100, 45],
                   ["413", "10-02-2022", 'boot', "shoe", 100, 45],
                   ["15", "10-02-2022", 'dress', "cloth", 155, 95],
                   ["633", "10-03-2022", 'boot', "shoe", 75, 30],
                   ["247", "10-03-2022", 'boot', "shoe", 75, 30],
                   ["8787", "10-04-2022", 'boot', "shoe", 120, 45],
                   ["9232", "10-05-2022", 'shirt', "cloth", 75, 30],
                   ["12340", "10-05-2022", 'dress', "cloth", 175, 95 ]],
                  columns=["count", "date", "name", "category", "price", "revenue"])

['count'] = df['count'].astype(int)
df['month'] = pd.to_datetime(df['date']).dt.strftime('%b')
df.groupby(['category', 'name', 'month'])[['count', 'revenue', 'price']].sum().unstack(fill_value=0)

Output:

                 count revenue price
month              Oct     Oct   Oct
category name                       
cloth    dress   12355     190   330
         shirt    9232      30    75
shoe     boot    10413     245   570
         sandal    211      20   210
like image 153
Scott Boston Avatar answered Nov 24 '25 07:11

Scott Boston



Donate For Us

If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!