The relevant question is Efficiently convert rows to columns in sql server. But the answer is specific to SQL.
I want the same result i.e. pivot row to column without aggregating anything (as of now) in MongoDB.
The collection looks something as below. These are statistics of facebook page properties:
timestamp | propName | propValue -------------------------------- 1371798000000 | page_fans | 100 -------------------------------- 1371798000000 | page_posts | 50 -------------------------------- 1371798000000 | page_stories | 25 --------------------------------
I need answer like:
timestamp | page_fans | page_posts | page_stories -------------------------------- 1371798000000 | 100 | 50 | 25 --------------------------------
The column names are pre-determined. They don't have to be generated dynamically. But question is how to achieve this in MongoDB.
I believe aggregation is of no use for this purpose. Do I need to use MapReduce? But in that case I have nothing to reduce I guess? Well another option could be fetching these values in code and do the manipulation in programming language e.g. Java
Any insights would be helpful. Thanks in advance :)!!!
EDIT (Based on input from Schaliasos):
Input JSON:
{
"_id" : ObjectId("51cd366644aeac654ecf8f75"),
"name" : "page_storytellers",
"pageId" : "512f993a44ae78b14a9adb85",
"timestamp" : NumberLong("1371798000000"),
"value" : NumberLong(30871),
"provider" : "Facebook"
}
{
"_id" : ObjectId("51cd366644aeac654ecf8f76"),
"name" : "page_fans",
"pageId" : "512f993a44ae78b14a9adb85",
"timestamp" : NumberLong("1371798000000"),
"value" : NumberLong(1291509),
"provider" : "Facebook"
}
{
"_id" : ObjectId("51cd366644aeac654ecf8f77"),
"name" : "page_fan_adds",
"pageId" : "512f993a44ae78b14a9adb85",
"timestamp" : NumberLong("1371798000000"),
"value" : NumberLong(2829),
"provider" : "Facebook"
}
Expected Output JSON:
{
"timestamp" : NumberLong("1371798000000"),
"provider" : "Facebook",
"page_storytellers" : NumberLong(30871),
"page_fans" : NumberLong("1371798000000"),
"page_fan_adds" : NumberLong("1371798000000")
}
Now, you can utilise new aggregation operator $arrayToObject to pivot MongoDB keys. This operator is available in MongoDB v3.4.4+
For example, given an example data of:
db.foo.insert({ provider: "Facebook", timestamp: '1371798000000', name: 'page_storytellers', value: 20871})
db.foo.insert({ provider: "Facebook", timestamp: '1371798000000', name: 'page_fans', value: 1291509})
db.foo.insert({ provider: "Facebook", timestamp: '1371798000000', name: 'page_fan_adds', value: 2829})
db.foo.insert({ provider: "Google", timestamp: '1371798000000', name: 'page_fan_adds', value: 1000})
You can utilise Aggregation Pipeline below:
db.foo.aggregate([
{$group:
{_id:{provider:"$provider", timestamp:"$timestamp"},
items:{$addToSet:{name:"$name",value:"$value"}}}
},
{$project:
{tmp:{$arrayToObject:
{$zip:{inputs:["$items.name", "$items.value"]}}}}
},
{$addFields:
{"tmp.provider":"$_id.provider",
"tmp.timestamp":"$_id.timestamp"}
},
{$replaceRoot:{newRoot:"$tmp"}
}
]);
The output would be:
{
"page_fan_adds": 1000,
"provider": "Google",
"timestamp": "1371798000000"
},
{
"page_fan_adds": 2829,
"page_fans": 1291509,
"page_storytellers": 20871,
"provider": "Facebook",
"timestamp": "1371798000000"
}
See also $group, $project, $addFields, $zip, and $replaceRoot
I have done something like this using aggregation. Could this help ?
db.foo.insert({ timestamp: '1371798000000', propName: 'page_fans', propValue: 100})
db.foo.insert({ timestamp: '1371798000000', propName: 'page_posts', propValue: 25})
db.foo.insert({ timestamp: '1371798000000', propName: 'page_stories', propValue: 50})
db.foo.aggregate({ $group: { _id: '$timestamp', result: { $push: { 'propName': '$propName', 'propValue': '$propValue' } }}})
{
"result" : [
{
"_id" : "1371798000000",
"result" : [
{
"propName" : "page_fans",
"propValue" : 100
},
{
"propName" : "page_posts",
"propValue" : 50
},
{
"propName" : "page_stories",
"propValue" : 25
}
]
}
],
"ok" : 1
}
You may want to use $sum
operator along the way. See here
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With