I have a data set in pyspark like this : from collections import namedtuple
user_row = namedtuple('user_row', 'id time category value'.split())
data = [
user_row(1,1,'speed','50'),
user_row(1,1,'speed','60'),
user_row(1,2,'door', 'open'),
user_row(1,2,'door','open'),
user_row(1,2,'door','close'),
user_row(1,2,'speed','75'),
user_row(2,10,'speed','30'),
user_row(2,11,'door', 'open'),
user_row(2,12,'door','open'),
user_row(2,13,'speed','50'),
user_row(2,13,'speed','40')
]
user_df = spark.createDataFrame(data)
user_df.show()
+---+----+--------+-----+
| id|time|category|value|
+---+----+--------+-----+
| 1| 1| speed| 50|
| 1| 1| speed| 60|
| 1| 2| door| open|
| 1| 2| door| open|
| 1| 2| door|close|
| 1| 2| speed| 75|
| 2| 10| speed| 30|
| 2| 11| door| open|
| 2| 12| door| open|
| 2| 13| speed| 50|
| 2| 13| speed| 40|
+---+----+--------+-----+
What I want to get is something like below where grouping by id and time and pivot on category and if it is numeric return the average and if it is categorical it returns the mode.
+---+----+--------+-----+
| id|time| door|speed|
+---+----+--------+-----+
| 1| 1| null| 55|
| 1| 2| open| 75|
| 2| 10| null| 30|
| 2| 11| open| null|
| 2| 12| open| null|
| 2| 13| null| 45|
+---+----+--------+-----+
I tried this but for categorical value it returns null (I am not worry about nulls in speed column)
df = user_df\
.groupBy('id','time')\
.pivot('category')\
.agg(avg('value'))\
.orderBy(['id', 'time'])\
df.show()
+---+----+----+-----+
| id|time|door|speed|
+---+----+----+-----+
| 1| 1|null| 55.0|
| 1| 2|null| 75.0|
| 2| 10|null| 30.0|
| 2| 11|null| null|
| 2| 12|null| null|
| 2| 13|null| 45.0|
+---+----+----+-----+
You can do an additional pivot and coalesce them. try this.
import pyspark.sql.functions as F
from collections import namedtuple
user_row = namedtuple('user_row', 'id time category value'.split())
data = [
user_row(1,1,'speed','50'),
user_row(1,1,'speed','60'),
user_row(1,2,'door', 'open'),
user_row(1,2,'door','open'),
user_row(1,2,'door','close'),
user_row(1,2,'speed','75'),
user_row(2,10,'speed','30'),
user_row(2,11,'door', 'open'),
user_row(2,12,'door','open'),
user_row(2,13,'speed','50'),
user_row(2,13,'speed','40')
]
user_df = spark.createDataFrame(data)
#%%
#user_df.show()
df = user_df.groupBy('id','time')\
.pivot('category')\
.agg(F.avg('value').alias('avg'),F.max('value').alias('max'))\
#%%
expr1= [x for x in df.columns if '_avg' in x]
expr2= [x for x in df.columns if 'max' in x]
expr=zip(expr1,expr2)
#%%
sel_expr= [F.coalesce(x[0],x[1]).alias(x[0].split('_')[0]) for x in expr]
#%%
df_final = df.select('id','time',*sel_expr).orderBy('id','time')
df_final.show()
+---+----+----+-----+
| id|time|door|speed|
+---+----+----+-----+
| 1| 1|null| 55.0|
| 1| 2|open| 75.0|
| 2| 10|null| 30.0|
| 2| 11|open| null|
| 2| 12|open| null|
| 2| 13|null| 45.0|
+---+----+----+-----+
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With