I have a CSV which looks like this:
Date,Open,High,Low,Close,Adj Close,Volume
2007-07-25,4.929000,4.946000,4.896000,4.904000,4.904000,0
2007-07-26,4.863000,4.867000,4.759000,4.777000,4.777000,0
2007-07-27,4.741000,4.818000,4.741000,4.788000,4.788000,0
2007-07-30,4.763000,4.810000,4.763000,4.804000,4.804000,0
after
data = pd.read_csv(file, index_col='Date').drop(['Open','Close','Adj Close','Volume'], axis=1)
i end up with a df which looks like this:
High Low
Date
2007-07-25 4.946000 4.896000
2007-07-26 4.867000 4.759000
2007-07-27 4.818000 4.741000
2007-07-30 4.810000 4.763000
2007-07-31 4.843000 4.769000
Now i want to get High - Low. Tried:
np.diff(data.values, axis=1)
but getting an error: unsupported operand type(s) for -: 'str' and 'str'
but sure why the values in the df are str in the first place. Grateful for any solution.
I think you need to_numeric
with errors='coerce'
because it seems there are some bad data:
data = pd.read_csv(file, index_col='Date', usecols=['High','Low'])
data = data.apply(pd.to_numeric, errors='coerce')
The read_csv dtype option doesn't work ?
from the documentation dtype : Type name or dict of column -> type, default None Data type for data or columns. E.g. {‘a’: np.float64, ‘b’: np.int32} Use str or object to preserve and not interpret dtype. If converters are specified, they will be applied INSTEAD of dtype conversion.
data = pd.read_csv(file,
index_col='Date',
usecols=['High','Low'],
dtype={'High': np.float64, 'Low': np.float64})
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With