I need to perform univariate feature selection in sklearn with a custom score, therefore I am using GenericUnivariateSelect. However, as in documentation,
modes for selectors : {‘percentile’, ‘k_best’, ‘fpr’, ‘fdr’, ‘fwe’}
In my case, I needed to select features where the score was above a certain value, so I have implemented:
from sklearn.feature_selection.univariate_selection import _clean_nans
from sklearn.feature_selection.univariate_selection import f_classif
import numpy as np
import pandas as pd
from sklearn.feature_selection import GenericUnivariateSelect
from sklearn.metrics import make_scorer
from sklearn.feature_selection.univariate_selection import _BaseFilter
from sklearn.pipeline import Pipeline
class SelectMinScore(_BaseFilter):
# Sklearn documentation: modes for selectors : {‘percentile’, ‘k_best’, ‘fpr’, ‘fdr’, ‘fwe’}
# custom selector:
# select features according to the k highest scores.
def __init__(self, score_func=f_classif, minScore=0.7):
super(SelectMinScore, self).__init__(score_func)
self.minScore = minScore
self.score_func=score_func
[...]
def _get_support_mask(self):
check_is_fitted(self, 'scores_')
if self.minScore == 'all':
return np.ones(self.scores_.shape, dtype=bool)
else:
scores = _clean_nans(self.scores_)
mask = np.zeros(scores.shape, dtype=bool)
# Custom part
# only score above the min
mask=scores>self.minScore
if not np.any(mask):
mask[np.argmax(scores)]=True
return mask
However, I also need to use a custom score function which must receive extra arguments (XX
) here:
Unfortunatley, I could not solve using make_scorer
def Custom_Score(X,Y,XX):
return 1
class myclass():
def mymethod(self,_XX):
custom_filter=GenericUnivariateSelect(Custom_Score(XX=_XX),mode='MinScore',param=0.7)
custom_filter._selection_modes.update({'MinScore': SelectMinScore})
MyProcessingPipeline=Pipeline(steps=[('filter_step', custom_filter)])
# finally
X=pd.DataFrame(data=np.random.rand(500,3))
y=pd.DataFrame(data=np.random.rand(500,1))
MyProcessingPipeline.fit(X,y)
MyProcessingPipeline.transform(X,y)
_XX=np.random.rand(500,1
C=myclass()
C.mymethod(_XX)
This raises the following error:
Traceback (most recent call last):
File "<ipython-input-37-f493745d7e1b>", line 1, in <module>
runfile('C:/Users/_____/Desktop/pd-sk-integration.py', wdir='C:/Users/_____/Desktop')
File "C:\Users\______\AppData\Local\Continuum\Anaconda2\lib\site-packages\spyder\utils\site\sitecustomize.py", line 866, in runfile
execfile(filename, namespace)
File "C:\Users\\______\\AppData\Local\Continuum\Anaconda2\lib\site-packages\spyder\utils\site\sitecustomize.py", line 87, in execfile
exec(compile(scripttext, filename, 'exec'), glob, loc)=
File "C:/Users/______/Desktop/pd-sk-integration.py", line 65, in <module>
C.mymethod()
File "C:/Users/______/Desktop/pd-sk-integration.py", line 55, in mymethod
custom_filter=GenericUnivariateSelect(Custom_Score(XX=_XX),mode='MinScore',param=0.7)
TypeError: Custom_Score() takes exactly 3 arguments (1 given)
I have tried a fix by adding an extra kwarg (XX)
to the fit()
of my SelectMinScore
function, and by passing it as a fit paramter.
As suggested by @TomDLT,
custom_filter = SelectMinScore(minScore=0.7)
pipe = Pipeline(steps=[('filter_step', custom_filter)])
pipe.fit(X,y, filter_step__XX=XX)
However, if I do
line 291, in set_params
(key, self.__class__.__name__))
ValueError: Invalid parameter XX for estimator SelectMinScore. Check the list of available parameters with `estimator.get_params().keys()`.
As you can see in the code, the scorer function is not called with extra arguments, so there is currently no easy way in scikit-learn to pass your samples properties XX
.
For your problem, a slightly hackish way could be to change the function fit
in SelectMinScore
, adding an additional parameter XX
:
def fit(self, X, y, XX):
"""..."""
X, y = check_X_y(X, y, ['csr', 'csc'], multi_output=True)
if not callable(self.score_func):
raise TypeError("The score function should be a callable, %s (%s) "
"was passed."
% (self.score_func, type(self.score_func)))
self._check_params(X, y)
score_func_ret = self.score_func(X, y, XX)
if isinstance(score_func_ret, (list, tuple)):
self.scores_, self.pvalues_ = score_func_ret
self.pvalues_ = np.asarray(self.pvalues_)
else:
self.scores_ = score_func_ret
self.pvalues_ = None
self.scores_ = np.asarray(self.scores_)
return self
Then you could call the pipeline with extra fit params:
custom_filter = SelectMinScore(minScore=0.7)
pipe = Pipeline(steps=[('filter_step', custom_filter)])
pipe.fit(X,y, filter_step__XX=XX)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With