Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Passing big complex arrays from Python to C++ - what's my best option?

2017/06/13 EDIT: I tried using boost as was suggested, but after spending more than 3 days trying to get it to compile and link, and failing, I decided that the stupid painful way was probably the fastest and less painfull.... so now my code just saves a mess of gigantic text files (splitting arrays and the complex/ imaginary parts of the numbers across files) that C++ then reads. Elegant... no.... effective... yes.


I have some scientific code, currently written in Python, that is being slowed down by a numerical 3d integration step within a loop. To overcome this I am re-writing this particular step in C++. (Cython etc is not an option).

Long story short: I want to transfer several very large arrays of complex numbers from the python code to the C++ integrator as conveniently and painlessly as possible. I could do this manually and painfully using text or binary files - but before I embark on this, I was wondering if I have any better options?

I'm using visual studio for C++ and anaconda for python (not my choice!)

Is there any file format or method that would make it quick and convenient to save an array of complex numbers from python and then recreate it in C++?

Many thanks, Ben

like image 280
Ben Avatar asked Dec 08 '22 18:12

Ben


2 Answers

An easy solution that I used many times is to build your "C++ side" as a dll (=shared object on Linux/OS X), provide a simple, C-like entrypoint (straight integers, pointers & co., no STL stuff) and pass the data through ctypes.

This avoids boost/SIP/Swig/... build nightmares, can be kept zero-copy (with ctypes you can pass a straight pointer to your numpy data) and allow you to do whatever you want (especially on the build-side - no friggin' distutils, no boost, no nothing - build it with whatever can build a C-like dll) on the C++ side. It has also the nice side-effect of having your C++ algorithm callable from other languages (virtually any language has some way to interface with C libraries).


Here's a quick artificial example. The C++ side is just:

extern "C" {
double sum_it(double *array, int size) {
    double ret = 0.;
    for(int i=0; i<size; ++i) {
        ret += array[i];
    }
    return ret;
}
}

This has to be compiled to a dll (on Windows) or a .so (on Linux), making sure to export the sum_it function (automatic with gcc, requires a .def file with VC++).

On the Python side, we can have a wrapper like

import ctypes
import os
import sys
import numpy as np

path = os.path.dirname(__file__)
cdll = ctypes.CDLL(os.path.join(path, "summer.dll" if sys.platform.startswith("win") else "summer.so"))
_sum_it = cdll.sum_it
_sum_it.restype = ctypes.c_double

def sum_it(l):
    if isinstance(l, np.ndarray) and l.dtype == np.float64 and len(l.shape)==1:
        # it's already a numpy array with the right features - go zero-copy
        a = l.ctypes.data
    else:
        # it's a list or something else - try to create a copy
        arr_t = ctypes.c_double * len(l)
        a = arr_t(*l)
    return _sum_it(a, len(l))

which makes sure that the data is marshaled correctly; then invoking the function is as trivial as

import summer
import numpy as np
# from a list (with copy)
print summer.sum_it([1, 2, 3, 4.5])
# from a numpy array of the right type - zero-copy
print summer.sum_it(np.array([3., 4., 5.]))

See the ctypes documentation for more information on how to use it. See also the relevant documentation in numpy.


For complex numbers, the situation is slightly more complicated, as there's no builtin for it in ctypes; if we want to use std::complex<double> on the C++ side (which is pretty much guaranteed to work fine with the numpy complex layout, namely a sequence of two doubles), we can write the C++ side as:

extern "C" {
std::complex<double> sum_it_cplx(std::complex<double> *array, int size) {
    std::complex<double> ret(0., 0.);
    for(int i=0; i<size; ++i) {
        ret += array[i];
    }
    return ret;
}
}

Then, on the Python side, we have to replicate the c_complex layout to retrieve the return value (or to be able to build complex arrays without numpy):

class c_complex(ctypes.Structure):
    # Complex number, compatible with std::complex layout
    _fields_ = [("real", ctypes.c_double), ("imag", ctypes.c_double)]

    def __init__(self, pycomplex):
        # Init from Python complex
        self.real = pycomplex.real
        self.imag = pycomplex.imag

    def to_complex(self):
        # Convert to Python complex
        return self.real + (1.j) * self.imag

Inheriting from ctypes.Structure enables the ctypes marshalling magic, which is performed according to the _fields_ member; the constructor and extra methods are just for ease of use on the Python side.

Then, we have to tell ctypes the return type

_sum_it_cplx = cdll.sum_it_cplx
_sum_it_cplx.restype = c_complex

and finally write our wrapper, in a similar fashion to the previous one:

def sum_it_cplx(l):
    if isinstance(l, np.ndarray) and l.dtype == np.complex and len(l.shape)==1:
        # the numpy array layout for complexes (sequence of two double) is already
        # compatible with std::complex (see https://stackoverflow.com/a/5020268/214671)
        a = l.ctypes.data
    else:
        # otherwise, try to build our c_complex
        arr_t = c_complex * len(l)
        a = arr_t(*(c_complex(r) for r in l))
    ret = _sum_it_cplx(a, len(l))
    return ret.to_complex()

Testing it as above

# from a complex list (with copy)
print summer.sum_it_cplx([1. + 0.j, 0 + 1.j, 2 + 2.j])
# from a numpy array of the right type - zero-copy
print summer.sum_it_cplx(np.array([1. + 0.j, 0 + 1.j, 2 + 2.j]))

yields the expected results:

(3+3j)
(3+3j)
like image 119
Matteo Italia Avatar answered Feb 06 '23 17:02

Matteo Italia


I see the OP is over a year old now, but I recently addressed a similar problem using the native Python-C/C++ API and its Numpy-C/C++ extension, and since I personally don't enjoy using ctypes for various reasons (e.g., complex number workarounds, messy code), nor Boost, wanted to post my answer for future searchers.

Documentation for the Python-C API and Numpy-C API are both quite extensive (albeit a little overwhelming at first). But after one or two successes, writing native C/C++ extensions becomes very easy.

Here is an example C++ function that can be called from Python. It integrates a 3D numpy array of either real or complex (numpy.double or numpy.cdouble) type. The function will be imported through a DLL (.so) via the module cintegrate.so.

#include "Python.h"
#include "numpy/arrayobject.h"
#include <math.h>

static PyObject * integrate3(PyObject * module, PyObject * args)
{
    PyObject * argy=NULL;        // Regular Python/C API
    PyArrayObject * yarr=NULL;   // Extended Numpy/C API
    double dx,dy,dz;

    // "O" format -> read argument as a PyObject type into argy (Python/C API)
    if (!PyArg_ParseTuple(args, "Oddd", &argy,&dx,&dy,&dz)
    {
        PyErr_SetString(PyExc_ValueError, "Error parsing arguments.");
        return NULL;
    }

    // Determine if it's a complex number array (Numpy/C API)
    int DTYPE = PyArray_ObjectType(argy, NPY_FLOAT); 
    int iscomplex = PyTypeNum_ISCOMPLEX(DTYPE);      

    // parse python object into numpy array (Numpy/C API)
    yarr = (PyArrayObject *)PyArray_FROM_OTF(argy, DTYPE, NPY_ARRAY_IN_ARRAY);
    if (yarr==NULL) {
        Py_INCREF(Py_None);
        return Py_None;
    }

    //just assume this for 3 dimensional array...you can generalize to N dims
    if (PyArray_NDIM(yarr) != 3) {
        Py_CLEAR(yarr);
        PyErr_SetString(PyExc_ValueError, "Expected 3 dimensional integrand");
        return NULL;
    }

    npy_intp * dims = PyArray_DIMS(yarr);
    npy_intp i,j,k,m;
    double * p;

    //initialize variable to hold result
    Py_complex result = {.real = 0, .imag = 0};

    if (iscomplex) {
        for (i=0;i<dims[0];i++) 
            for (j=0;j<dims[1];j++) 
                for (k=0;k<dims[1];k++) {
                    p = (double*)PyArray_GETPTR3(yarr, i,j,k);
                    result.real += *p;
                    result.imag += *(p+1);
                }
    } else {
        for (i=0;i<dims[0];i++) 
            for (j=0;j<dims[1];j++) 
                for (k=0;k<dims[1];k++) {
                    p = (double*)PyArray_GETPTR3(yarr, i,j,k);
                    result.real += *p;
                }
    }

    //multiply by step size
    result.real *= (dx*dy*dz);
    result.imag *= (dx*dy*dz);

    Py_CLEAR(yarr);

    //copy result into returnable type with new reference
    if (iscomplex) {
        return Py_BuildValue("D", &result);
    } else {
        return Py_BuildValue("d", result.real);
    }

};

Simply put that into a source file (we'll call it cintegrate.cxx along with the module definition stuff, inserted at the bottom:

static PyMethodDef cintegrate_Methods[] = {
    {"integrate3",  integrate3, METH_VARARGS,
     "Pass 3D numpy array (double or complex) and dx,dy,dz step size. Returns Reimman integral"},
    {NULL, NULL, 0, NULL}        /* Sentinel */
};


static struct PyModuleDef module = {
   PyModuleDef_HEAD_INIT,
   "cintegrate",   /* name of module */
   NULL, /* module documentation, may be NULL */
   -1,       /* size of per-interpreter state of the module,
                or -1 if the module keeps state in global variables. */
   cintegrate_Methods
};

Then compile that via setup.py much like Walter's boost example with just a couple obvious changes- replacing file.cc there with our file cintegrate.cxx, removing boost dependencies, and making sure the path to "numpy/arrayobject.h" is included.

In python then you can use it like:

import cintegrate
import numpy as np

arr = np.random.randn(4,8,16) + 1j*np.random.randn(4,8,16)

# arbitrary step size dx = 1., y=0.5, dz = 0.25
ans = cintegrate.integrate3(arr, 1.0, 0.5, .25)

This specific code hasn't been tested but is mostly copied from working code.

like image 38
v.chaplin Avatar answered Feb 06 '23 18:02

v.chaplin