I need to parse (and transform and write) a large binary file (larger than memory) in Java. I also need to do so as efficiently as possible in a single thread. And, finally, the format being read is very structured, so it would be good to have some kind of parser library (so that the code is close to the complex specification).
The amount of lookahead needed for parsing should be small, if that matters.
So my questions are:
How important is nio v io for a single threaded, high volume application?
Are there any good parser libraries for binary data?
How well do parsers support streaming transformations (I want to be able to stream the data being parsed to some output during parsing - I don't want to have to construct an entire parse tree in memory before writing things out)?
On the nio front my suspicion is that nio isn't going to help much, as I am likely disk limited (and since it's a single thread, there's no loss in simply blocking). Also, I suspect io-based parsers are more common.
Let me try to explain if and how Preon addresses all of the concerns you mention:
I need to parse (and transform and write) a large binary file (larger than memory) in Java.
That's exactly why Preon was created. You want to be able to process the entire file, without loading it into memory entirely. Still, the program model gives you a pointer to a data structure that appears to be in memory entirely. However, Preon will try to load data as lazily as it can.
To explain what that means, imagine that somewhere in your data structure, you have a collection of things that are encoded in a binary representation with a constant size; say that every element will be encoded in 20 bytes. Then Preon will first of all not load that collection in memory at all, and if you're grabbing data beyond that collection, it will never touch that region of your encoded representation at all. However, if you would pick the 300th element of that collection, it would (instead of decoding all elements up to the 300th element), calculate the offset for that element, and jump there immediately.
From the outside, it is as though you have a reference to a list that is fully populated. From the inside, it only goes out to grab an element of the list if you ask for it. (And forget about it immediately afterward, unless you instruct Preon to do things differently.)
I also need to do so as efficiently as possible in a single thread.
I'm not sure what you mean by efficiently. It could mean efficiently in terms of memory consumption, or efficiently in terms of disk IO, or perhaps you mean it should be really fast. I think it's fair to say that Preon aims to strike a balance between an easy programming model, memory use and a number of other concerns. If you really need to traverse all data in a sequential way, then perhaps there are ways that are more efficient in terms of computational resources, but I think that would come at the cost of "ease of programming".
And, finally, the format being read is very structured, so it would be good to have some kind of parser library (so that the code is close to the complex specification).
The way I implemented support for Java byte code, is to just read the byte code specification, and then map all of the structures they mention in there directly to Java classes with annotations. I think Preon comes pretty close to what you're looking for.
You might also want to check out preon-emitter, since it allows you to generate annotated hexdumps (such as in this example of the hexdump of a Java class file) of your data, a capability that I haven't seen in any other library. (Hint: make sure you hover with your mouse over the hex numbers.)
The same goes for the documentation it generates. The aim has always been to mak sure it creates documentation that could be posted to Wikipedia, just like that. It may not be perfect yet, but I'm not unhappy with what it's currently capable of doing. (For an example: this is the documentation generated for Java's class file specification.)
The amount of lookahead needed for parsing should be small, if that matters.
Okay, that's good. In fact, that's even vital for Preon. Preon doesn't support lookahead. It does support looking back though. (That is, sometimes part the encoding mechanism is driven by data that was read before. Preon allows you to declare dependencies that point back to data read before.)
Are there any good parser libraries for binary data?
Preon! ;-)
How well do parsers support streaming transformations (I want to be able to stream the data being parsed to some output during parsing - I don't want to have to construct an entire parse tree in memory before writing things out)?
As I outlined above, Preon does not construct the entire data structure in memory before you can start processing it. So, in that sense, you're good. However, there is nothing in Preon supporting transformations as first class citizens, and it's support for encoding is limited.
On the nio front my suspicion is that nio isn't going to help much, as I am likely disk limited (and since it's a single thread, there's no loss in simply blocking). Also, I suspect io-based parsers are more common.
Preon uses NIO, but only it's support for memory mapped files.
On NIO vs IO you are right, going with IO should be the right choice - less complexity, stream oriented etc.
For a binary parsing library - checkout Preon
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With