Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Parse CSV as DataFrame/DataSet with Apache Spark and Java

Tags:

I am new to spark, and I want to use group-by & reduce to find the following from CSV (one line by employed):

  Department, Designation, costToCompany, State
  Sales, Trainee, 12000, UP
  Sales, Lead, 32000, AP
  Sales, Lead, 32000, LA
  Sales, Lead, 32000, TN
  Sales, Lead, 32000, AP
  Sales, Lead, 32000, TN 
  Sales, Lead, 32000, LA
  Sales, Lead, 32000, LA
  Marketing, Associate, 18000, TN
  Marketing, Associate, 18000, TN
  HR, Manager, 58000, TN

I would like to simplify the about CSV with group by Department, Designation, State with additional columns with sum(costToCompany) and TotalEmployeeCount

Should get a result like:

  Dept, Desg, state, empCount, totalCost
  Sales,Lead,AP,2,64000
  Sales,Lead,LA,3,96000  
  Sales,Lead,TN,2,64000

Is there any way to achieve this using transformations and actions. Or should we go for RDD operations?

like image 269
mithra Avatar asked Aug 18 '14 12:08

mithra


People also ask

How do I read a CSV file in Spark Databricks?

Apache PySpark provides the "csv("path")" for reading a CSV file into the Spark DataFrame and the "dataframeObj. write. csv("path")" for saving or writing to the CSV file. The Apache PySpark supports reading the pipe, comma, tab, and other delimiters/separator files.

Which method can be used to convert a Spark DataSet to a DataFrame?

Converting Spark RDD to DataFrame can be done using toDF(), createDataFrame() and transforming rdd[Row] to the data frame.


2 Answers

CSV file can be parsed with Spark built-in CSV reader. It will return DataFrame/DataSet on the successful read of the file. On top of DataFrame/DataSet, you apply SQL-like operations easily.

Using Spark 2.x(and above) with Java

Create SparkSession object aka spark

import org.apache.spark.sql.SparkSession;

SparkSession spark = SparkSession
    .builder()
    .appName("Java Spark SQL Example")
    .getOrCreate();

Create Schema for Row with StructType

import org.apache.spark.sql.types.StructType;

StructType schema = new StructType()
    .add("department", "string")
    .add("designation", "string")
    .add("ctc", "long")
    .add("state", "string");

Create dataframe from CSV file and apply schema to it

Dataset<Row> df = spark.read()
    .option("mode", "DROPMALFORMED")
    .schema(schema)
    .csv("hdfs://path/input.csv");

more option on reading data from CSV file

Now we can aggregation on data in 2 ways

1. SQL way

Register a table in spark sql metastore to perform SQL operation

df.createOrReplaceTempView("employee");

Run SQL query on registered dataframe

Dataset<Row> sqlResult = spark.sql(
    "SELECT department, designation, state, SUM(ctc), COUNT(department)" 
        + " FROM employee GROUP BY department, designation, state");

sqlResult.show(); //for testing

We can even execute SQL directly on CSV file with out creating table with Spark SQL


2. Object chaining or Programming or Java-like way

Do the necessary import for sql functions

import static org.apache.spark.sql.functions.count;
import static org.apache.spark.sql.functions.sum;

Use groupBy and agg on dataframe/dataset to perform count and sum on data

Dataset<Row> dfResult = df.groupBy("department", "designation", "state")
    .agg(sum("ctc"), count("department"));
// After Spark 1.6 columns mentioned in group by will be added to result by default

dfResult.show();//for testing

dependent libraries

"org.apache.spark" % "spark-core_2.11" % "2.0.0" 
"org.apache.spark" % "spark-sql_2.11" % "2.0.0"
like image 25
mrsrinivas Avatar answered Oct 14 '22 20:10

mrsrinivas


Procedure

  • Create a Class (Schema) to encapsulate your structure (it’s not required for the approach B, but it would make your code easier to read if you are using Java)

    public class Record implements Serializable {
      String department;
      String designation;
      long costToCompany;
      String state;
      // constructor , getters and setters  
    }
    
  • Loading CVS (JSON) file

    JavaSparkContext sc;
    JavaRDD<String> data = sc.textFile("path/input.csv");
    //JavaSQLContext sqlContext = new JavaSQLContext(sc); // For previous versions 
    SQLContext sqlContext = new SQLContext(sc); // In Spark 1.3 the Java API and Scala API have been unified
    
    
    JavaRDD<Record> rdd_records = sc.textFile(data).map(
      new Function<String, Record>() {
          public Record call(String line) throws Exception {
             // Here you can use JSON
             // Gson gson = new Gson();
             // gson.fromJson(line, Record.class);
             String[] fields = line.split(",");
             Record sd = new Record(fields[0], fields[1], fields[2].trim(), fields[3]);
             return sd;
          }
    });
    

At this point you have 2 approaches:

A. SparkSQL

  • Register a table (using the your defined Schema Class)

    JavaSchemaRDD table = sqlContext.applySchema(rdd_records, Record.class);
    table.registerAsTable("record_table");
    table.printSchema();
    
  • Query the table with your desired Query-group-by

    JavaSchemaRDD res = sqlContext.sql("
      select department,designation,state,sum(costToCompany),count(*) 
      from record_table 
      group by department,designation,state
    ");
    
  • Here you would also be able to do any other query you desire, using a SQL approach

B. Spark

  • Mapping using a composite key: Department,Designation,State

    JavaPairRDD<String, Tuple2<Long, Integer>> records_JPRDD = 
    rdd_records.mapToPair(new
      PairFunction<Record, String, Tuple2<Long, Integer>>(){
        public Tuple2<String, Tuple2<Long, Integer>> call(Record record){
          Tuple2<String, Tuple2<Long, Integer>> t2 = 
          new Tuple2<String, Tuple2<Long,Integer>>(
            record.Department + record.Designation + record.State,
            new Tuple2<Long, Integer>(record.costToCompany,1)
          );
          return t2;
    }
    

    });

  • reduceByKey using the composite key, summing costToCompany column, and accumulating the number of records by key

    JavaPairRDD<String, Tuple2<Long, Integer>> final_rdd_records = 
     records_JPRDD.reduceByKey(new Function2<Tuple2<Long, Integer>, Tuple2<Long,
     Integer>, Tuple2<Long, Integer>>() {
        public Tuple2<Long, Integer> call(Tuple2<Long, Integer> v1,
        Tuple2<Long, Integer> v2) throws Exception {
            return new Tuple2<Long, Integer>(v1._1 + v2._1, v1._2+ v2._2);
        }
    });
    
like image 140
emecas Avatar answered Oct 14 '22 21:10

emecas