I need to read a very large Excel file into a DataFrame. The file has string, integer, float, and Boolean data, as well as missing data and totally empty rows. It may also be worth noting that some of the cell values are derived from cell formulas and/or VBA - although theoretically that shouldn't affect anything.
As the title says, pandas sometimes reads Boolean values as float or int 1's and 0's, instead of True and False. It appears to have something to do with the amount of empty rows and type of other data. For simplicity's sake, I'm just linking a 2-sheet Excel file where the issue is replicated. Boolean_1.xlsx
Here's the code:
import pandas as pd
df1 = pd.read_excel('Boolean_1.xlsx','Sheet1')
df2 = pd.read_excel('Boolean_1.xlsx','Sheet2')
print(df1, '\n' *2, df2)
Here's the print. Mainly note row ZBA, which has the same values in both sheets, but different values in the DataFrames:
Name stuff Unnamed: 1 Unnamed: 2 Unnamed: 3
0 AFD a dsf ads
1 DFA 1 2 3
2 DFD 123.3 41.1 13.7
3 IIOP why why why
4 NaN NaN NaN NaN
5 ZBA False False True
Name adslfa Unnamed: 1 Unnamed: 2 Unnamed: 3
0 asdf 6.0 3.0 6.0
1 NaN NaN NaN NaN
2 NaN NaN NaN NaN
3 NaN NaN NaN NaN
4 NaN NaN NaN NaN
5 ZBA 0.0 0.0 1.0
I was also able to get integer 1's and 0's output in the large file I'm actually working on (yay), but wasn't able to easily replicate it.
What could be causing this inconsistency, and is there a way to force pandas to read Booleans as they should be read?
Pandas type-casting is applied by column / series. In general, Pandas doesn't work well with mixed types, or object
dtype. You should expect internalised logic to determine the most efficient dtype for a series. In this case, Pandas has chosen float
dtype as applicable for a series containing float
and bool
values. In my opinion, this is efficient and neat.
However, as you noted, this won't work when you have a transposed input dataset. Let's set up an example from scratch:
import pandas as pd, numpy as np
df = pd.DataFrame({'A': [True, False, True, True],
'B': [np.nan, np.nan, np.nan, False],
'C': [True, 'hello', np.nan, True]})
df = df.astype({'A': bool, 'B': float, 'C': object})
print(df)
A B C
0 True NaN True
1 False NaN hello
2 True NaN NaN
3 True 0.0 True
You can, without transposing your data, change the dtype for objects in a row. This will force series B to have object
dtype, i.e. a series storing pointers to arbitrary types:
df.iloc[3] = df.iloc[3].astype(bool)
print(df)
A B C
0 True NaN True
1 False NaN hello
2 True NaN NaN
3 True False True
print(df.dtypes)
A bool
B object
C object
dtype: object
In my opinion, this is the better option, as a data type is being attached to a specific category / series of input data.
df = df.T # transpose dataframe
df[3] = df[3].astype(bool) # convert series to Boolean
print(df)
0 1 2 3
A True False True True
B NaN NaN NaN False
C True hello NaN True
print(df.dtypes)
0 object
1 object
2 object
3 bool
dtype: object
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With