In R, you can combine two dataframes by sticking the columns of one onto the bottom of the columns of the other using rbind. In pandas, how do you accomplish the same thing? It seems bizarrely difficult.
Using append results in a horrible mess including NaNs and things for reasons I don't understand. I'm just trying to "rbind" two identical frames that look like this:
EDIT: I was creating the DataFrames in a stupid way, which was causing issues. Append=rbind to all intents and purposes. See answer below.
0 1 2 3 4 5 6 7 0 ADN.L 20130220 437.4 442.37 436.5000 441.9000 2775364 2013-02-20 18:47:42 1 ADM.L 20130220 1279.0 1300.00 1272.0000 1285.0000 967730 2013-02-20 18:47:42 2 AGK.L 20130220 1717.0 1749.00 1709.0000 1739.0000 834534 2013-02-20 18:47:43 3 AMEC.L 20130220 1030.0 1040.00 1024.0000 1035.0000 1972517 2013-02-20 18:47:43 4 AAL.L 20130220 1998.0 2014.50 1942.4999 1951.0000 3666033 2013-02-20 18:47:44 5 ANTO.L 20130220 1093.0 1097.00 1064.7899 1068.0000 2183931 2013-02-20 18:47:44 6 ARM.L 20130220 941.5 965.10 939.4250 951.5001 2994652 2013-02-20 18:47:45
But I'm getting something horrible a la this:
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 NaN NaN NaN NaN NaN NaN NaN NaN ADN.L 20130220 437.4 442.37 436.5000 441.9000 2775364 2013-02-20 18:47:42 1 NaN NaN NaN NaN NaN NaN NaN NaN ADM.L 20130220 1279.0 1300.00 1272.0000 1285.0000 967730 2013-02-20 18:47:42 2 NaN NaN NaN NaN NaN NaN NaN NaN AGK.L 20130220 1717.0 1749.00 1709.0000 1739.0000 834534 2013-02-20 18:47:43 3 NaN NaN NaN NaN NaN NaN NaN NaN AMEC.L 20130220 1030.0 1040.00 1024.0000 1035.0000 1972517 2013-02-20 18:47:43 4 NaN NaN NaN NaN NaN NaN NaN NaN AAL.L 20130220 1998.0 2014.50 1942.4999 1951.0000 3666033 2013-02-20 18:47:44 5 NaN NaN NaN NaN NaN NaN NaN NaN ANTO.L 20130220 1093.0 1097.00 1064.7899 1068.0000 2183931 2013-02-20 18:47:44 6 NaN NaN NaN NaN NaN NaN NaN NaN ARM.L 20130220 941.5 965.10 939.4250 951.5001 2994652 2013-02-20 18:47:45 0 NaN NaN NaN NaN NaN NaN NaN NaN ADN.L 20130220 437.4 442.37 436.5000 441.9000 2775364 2013-02-20 18:47:42 1 NaN NaN NaN NaN NaN NaN NaN NaN ADM.L 20130220 1279.0 1300.00 1272.0000 1285.0000 967730 2013-02-20 18:47:42 2 NaN NaN NaN NaN NaN NaN NaN NaN AGK.L 20130220 1717.0 1749.00 1709.0000 1739.0000 834534 2013-02-20 18:47:43 3 NaN NaN NaN NaN NaN NaN NaN NaN
And I don't understand why. I'm starting to miss R :(
The rbind function in R, short for row-bind, can be used to combine data frames together by their rows. The following examples shows how to use this function in practice.
R Medium rbind function , namely _row-bind_ Abbreviation , It can be used to combine data frames according to their number of rows . We can use pandas Of concat() Function to execute Python Equivalent functions in . The following example shows how to use this function in practice .
table is the fastest with average execution time 428 milliseconds. It's more than twice faster than bind_rows from dplyr , which took an average of 1,050 milliseconds, and more than 10 times faster than rbind from base R, which took an average of 5,358 milliseconds!
The main types stored in pandas objects are float, int, bool, datetime64[ns], timedelta[ns], and object. In addition these dtypes have item sizes, e.g. int64 and int32.
Ah, this is to do with how I created the DataFrame, not with how I was combining them. The long and the short of it is, if you are creating a frame using a loop and a statement that looks like this:
Frame = Frame.append(pandas.DataFrame(data = SomeNewLineOfData))
You must ignore the index
Frame = Frame.append(pandas.DataFrame(data = SomeNewLineOfData), ignore_index=True)
Or you will have issues later when combining data.
pd.concat
will serve the purpose of rbind
in R.
import pandas as pd df1 = pd.DataFrame({'col1': [1,2], 'col2':[3,4]}) df2 = pd.DataFrame({'col1': [5,6], 'col2':[7,8]}) print(df1) print(df2) print(pd.concat([df1, df2]))
The outcome will looks like:
col1 col2 0 1 3 1 2 4 col1 col2 0 5 7 1 6 8 col1 col2 0 1 3 1 2 4 0 5 7 1 6 8
If you read the documentation careful enough, it will also explain other operations like cbind, ..etc.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With