I'm trying to update a couple fields at once - I have two data sources and I'm trying to reconcile them. I know I could do some ugly merging and then delete columns, but was expecting this code below to work:
df = pd.DataFrame([['A','B','C',np.nan,np.nan,np.nan], ['D','E','F',np.nan,np.nan,np.nan],[np.nan,np.nan,np.nan,'a','b','d'], [np.nan,np.nan,np.nan,'d','e','f']], columns = ['Col1','Col2','Col3','col1_v2','col2_v2','col3_v2']) print df Col1 Col2 Col3 col1_v2 col2_v2 col3_v2 0 A B C NaN NaN NaN 1 D E F NaN NaN NaN 2 NaN NaN NaN a b d 3 NaN NaN NaN d e f #update df.loc[df['Col1'].isnull(),['Col1','Col2', 'Col3']] = df[['col1_v2','col2_v2','col3_v2']] print df Col1 Col2 Col3 col1_v2 col2_v2 col3_v2 0 A B C NaN NaN NaN 1 D E F NaN NaN NaN 2 NaN NaN NaN a b d 3 NaN NaN NaN d e f
My desired output would be:
Col1 Col2 Col3 col1_v2 col2_v2 col3_v2 0 A B C NaN NaN NaN 1 D E F NaN NaN NaN 2 a b c a b d 3 d e f d e f
I'm betting it has to do with updating/setting on a slice, but I always use .loc to update values, just not on multiple columns at once.
I feel like there's an easy way to do this that I'm just missing, any thoughts/suggestions would be welcome!
Edit to reflect solution below Thanks for the comment on the indexes. However, I have a question about this as it relates to series. If I wanted to update an individual series in a similar manner, I could do something like this:
df.loc[df['Col1'].isnull(),['Col1']] = df['col1_v2'] print df Col1 Col2 Col3 col1_v2 col2_v2 col3_v2 0 A B C NaN NaN NaN 1 D E F NaN NaN NaN 2 a NaN NaN a b d 3 d NaN NaN d e f
Note that I didn't account for the indexes here, I filtered to a 2x1 series and set that equal to a 4x1 series, yet it handled it correctly. Thoughts? I'm trying to understand the functionality a bit better of something I've used for a while, but I guess don't have a full grasp of the underlying mechanism/rule
loc to change values in a DataFrame column based on a condition. Call pandas. DataFrame. loc [condition, column_label] = new_value to change the value in the column named column_name to value in each row for which condition is True .
you want to replace
print df.loc[df['Col1'].isnull(),['Col1','Col2', 'Col3']] Col1 Col2 Col3 2 NaN NaN NaN 3 NaN NaN NaN
With:
replace_with_this = df.loc[df['Col1'].isnull(),['col1_v2','col2_v2', 'col3_v2']] print replace_with_this col1_v2 col2_v2 col3_v2 2 a b d 3 d e f
Seems reasonable. However, when you do the assignment, you need to account for index alignment, which includes columns.
So, this should work:
df.loc[df['Col1'].isnull(),['Col1','Col2', 'Col3']] = replace_with_this.values print df Col1 Col2 Col3 col1_v2 col2_v2 col3_v2 0 A B C NaN NaN NaN 1 D E F NaN NaN NaN 2 a b d a b d 3 d e f d e f
I accounted for columns by using .values
at the end. This stripped the column information from the replace_with_this
dataframe and just used the values in the appropriate positions.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With