I have a dataframe with dates in the following manner:
'Jan 2019', 'Feb 2019', 'Mär 2019', 'Apr 2019', 'Mai 2019', 'Jun 2019', 'Jul 2019', 'Aug 2019', 'Sep 2019', 'Okt 2019', 'Nov 2019', 'Dez 2019'
I am trying to convert the column to datetime using
pd.to_datetime(df.month, format='%b%Y', errors='ignore')
Unfortunately, to_datetime
retuns objects instead of datetimes. I believe it's because of the German spelling of the date (e.g. 'Mär 2019' instead of 'Mar 2019' or 'Dez 2019' instead of 'Dec 2019').
What would be a good general solution to this problem?
If you have german "locale" installed (it is OS dependendent and topic for separate question), here is an easy and clean way:
import pandas as pd
import locale
a = ['Jan 2019', 'Feb 2019', 'Mär 2019', 'Apr 2019', 'Mai 2019',
'Jun 2019', 'Jul 2019', 'Aug 2019', 'Sep 2019', 'Okt 2019', 'Nov 2019', 'Dez 2019']
df = pd.DataFrame({'month':a})
locale.setlocale(locale.LC_ALL, 'de_DE')
df['month'] = pd.to_datetime(df['month'], format='%b %Y')
Output:
month
0 2019-01-01
1 2019-02-01
2 2019-03-01
3 2019-04-01
4 2019-05-01
5 2019-06-01
6 2019-07-01
7 2019-08-01
8 2019-09-01
9 2019-10-01
10 2019-11-01
11 2019-12-01
I think one possible solution is use Series.replace
before converting to datetimes:
a = ['Jan 2019', 'Feb 2019', 'Mär 2019', 'Apr 2019', 'Mai 2019',
'Jun 2019', 'Jul 2019', 'Aug 2019', 'Sep 2019', 'Okt 2019', 'Nov 2019', 'Dez 2019']
df = pd.DataFrame({'month':a})
d = {'Mär':'Mar', 'Mai':'May','Okt':'Oct','Dez':'Dec'}
df['month']=pd.to_datetime(df['month'].replace(d, regex=True), format='%b %Y', errors='coerce')
print (df)
month
0 2019-01-01
1 2019-02-01
2 2019-03-01
3 2019-04-01
4 2019-05-01
5 2019-06-01
6 2019-07-01
7 2019-08-01
8 2019-09-01
9 2019-10-01
10 2019-11-01
11 2019-12-01
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With