Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

pandas three-way joining multiple dataframes on columns

People also ask

How do I combine 3 data frames?

Pandas merge() function is used to merge multiple Dataframes. We can use either pandas. merge() or DataFrame. merge() to merge multiple Dataframes.

How do I join 3 DataFrames in Python?

To work with multiple DataFrames, you must put the joining columns in the index. Joining all of the dfs to an empty dataframe also works: pd. DataFrame(). join(dfs, how="outer") .

How do I combine multiple data frames into one?

The concat() function can be used to concatenate two Dataframes by adding the rows of one to the other. The merge() function is equivalent to the SQL JOIN clause. 'left', 'right' and 'inner' joins are all possible.


Assumed imports:

import pandas as pd

John Galt's answer is basically a reduce operation. If I have more than a handful of dataframes, I'd put them in a list like this (generated via list comprehensions or loops or whatnot):

dfs = [df0, df1, df2, dfN]

Assuming they have some common column, like name in your example, I'd do the following:

df_final = reduce(lambda left,right: pd.merge(left,right,on='name'), dfs)

That way, your code should work with whatever number of dataframes you want to merge.

Edit August 1, 2016: For those using Python 3: reduce has been moved into functools. So to use this function, you'll first need to import that module:

from functools import reduce

You could try this if you have 3 dataframes

# Merge multiple dataframes
df1 = pd.DataFrame(np.array([
    ['a', 5, 9],
    ['b', 4, 61],
    ['c', 24, 9]]),
    columns=['name', 'attr11', 'attr12'])
df2 = pd.DataFrame(np.array([
    ['a', 5, 19],
    ['b', 14, 16],
    ['c', 4, 9]]),
    columns=['name', 'attr21', 'attr22'])
df3 = pd.DataFrame(np.array([
    ['a', 15, 49],
    ['b', 4, 36],
    ['c', 14, 9]]),
    columns=['name', 'attr31', 'attr32'])

pd.merge(pd.merge(df1,df2,on='name'),df3,on='name')

alternatively, as mentioned by cwharland

df1.merge(df2,on='name').merge(df3,on='name')

This is an ideal situation for the join method

The join method is built exactly for these types of situations. You can join any number of DataFrames together with it. The calling DataFrame joins with the index of the collection of passed DataFrames. To work with multiple DataFrames, you must put the joining columns in the index.

The code would look something like this:

filenames = ['fn1', 'fn2', 'fn3', 'fn4',....]
dfs = [pd.read_csv(filename, index_col=index_col) for filename in filenames)]
dfs[0].join(dfs[1:])

With @zero's data, you could do this:

df1 = pd.DataFrame(np.array([
    ['a', 5, 9],
    ['b', 4, 61],
    ['c', 24, 9]]),
    columns=['name', 'attr11', 'attr12'])
df2 = pd.DataFrame(np.array([
    ['a', 5, 19],
    ['b', 14, 16],
    ['c', 4, 9]]),
    columns=['name', 'attr21', 'attr22'])
df3 = pd.DataFrame(np.array([
    ['a', 15, 49],
    ['b', 4, 36],
    ['c', 14, 9]]),
    columns=['name', 'attr31', 'attr32'])

dfs = [df1, df2, df3]
dfs = [df.set_index('name') for df in dfs]
dfs[0].join(dfs[1:])

     attr11 attr12 attr21 attr22 attr31 attr32
name                                          
a         5      9      5     19     15     49
b         4     61     14     16      4     36
c        24      9      4      9     14      9

In python 3.6.3 with pandas 0.22.0 you can also use concat as long as you set as index the columns you want to use for the joining

pd.concat(
    (iDF.set_index('name') for iDF in [df1, df2, df3]),
    axis=1, join='inner'
).reset_index()

where df1, df2, and df3 are defined as in John Galt's answer

import pandas as pd
df1 = pd.DataFrame(np.array([
    ['a', 5, 9],
    ['b', 4, 61],
    ['c', 24, 9]]),
    columns=['name', 'attr11', 'attr12']
)
df2 = pd.DataFrame(np.array([
    ['a', 5, 19],
    ['b', 14, 16],
    ['c', 4, 9]]),
    columns=['name', 'attr21', 'attr22']
)
df3 = pd.DataFrame(np.array([
    ['a', 15, 49],
    ['b', 4, 36],
    ['c', 14, 9]]),
    columns=['name', 'attr31', 'attr32']
)

This can also be done as follows for a list of dataframes df_list:

df = df_list[0]
for df_ in df_list[1:]:
    df = df.merge(df_, on='join_col_name')

or if the dataframes are in a generator object (e.g. to reduce memory consumption):

df = next(df_list)
for df_ in df_list:
    df = df.merge(df_, on='join_col_name')

Simple Solution:

If the column names are similar:

 df1.merge(df2,on='col_name').merge(df3,on='col_name')

If the column names are different:

df1.merge(df2,left_on='col_name1', right_on='col_name2').merge(df3,left_on='col_name1', right_on='col_name3').drop(columns=['col_name2', 'col_name3']).rename(columns={'col_name1':'col_name'})

Here is a method to merge a dictionary of data frames while keeping the column names in sync with the dictionary. Also it fills in missing values if needed:

This is the function to merge a dict of data frames

def MergeDfDict(dfDict, onCols, how='outer', naFill=None):
  keys = dfDict.keys()
  for i in range(len(keys)):
    key = keys[i]
    df0 = dfDict[key]
    cols = list(df0.columns)
    valueCols = list(filter(lambda x: x not in (onCols), cols))
    df0 = df0[onCols + valueCols]
    df0.columns = onCols + [(s + '_' + key) for s in valueCols] 

    if (i == 0):
      outDf = df0
    else:
      outDf = pd.merge(outDf, df0, how=how, on=onCols)   

  if (naFill != None):
    outDf = outDf.fillna(naFill)

  return(outDf)

OK, lets generates data and test this:

def GenDf(size):
  df = pd.DataFrame({'categ1':np.random.choice(a=['a', 'b', 'c', 'd', 'e'], size=size, replace=True),
                      'categ2':np.random.choice(a=['A', 'B'], size=size, replace=True), 
                      'col1':np.random.uniform(low=0.0, high=100.0, size=size), 
                      'col2':np.random.uniform(low=0.0, high=100.0, size=size)
                      })
  df = df.sort_values(['categ2', 'categ1', 'col1', 'col2'])
  return(df)


size = 5
dfDict = {'US':GenDf(size), 'IN':GenDf(size), 'GER':GenDf(size)}   
MergeDfDict(dfDict=dfDict, onCols=['categ1', 'categ2'], how='outer', naFill=0)