Some rows were input in the wrong columns so now I need to swap them.
df = pd.DataFrame({'c': {0: '22:58:00', 1: '23:03:00', 2: '0', 3: '10'}, 'a': {0: '0', 1: '10', 2: '22:58:00', 3: '23:03:00'}, 'd': {0: '23:27:00', 1: '23:39:00', 2: '10', 3: '17'}, 'b': {0: '10', 1: '17', 2: '23:27:00', 3: '23:39:00'}})
a b c d
0 0 10 22:58:00 23:27:00
1 10 17 23:03:00 23:39:00
2 22:58:00 23:27:00 0 10
3 23:03:00 23:39:00 10 17
My current approach
cpy = df[['a', 'b']]
df.loc[2:, 'a'] = df['c']
df.loc[2:, 'b'] = df['d']
df.loc[2:, 'c'] = cpy['a']
df.loc[2:, 'd'] = cpy['b']
Expected output
a b c d
0 0 10 22:58:00 23:27:00
1 10 17 23:03:00 23:39:00
2 0 10 22:58:00 23:27:00
3 10 17 23:03:00 23:39:00
It works but this is only possible because it was 4 columns. Is there a better way to do this?
Note the dtypes can cause issues with sorting
df.loc[0]['c'] is datetime.time(22, 58)
Maybe there is something like
df.swap_row_col(index=[2:], columns_from=['a', 'b'], columns_to=['c', 'd'])
Maybe we can try notice here in my solution if the original order is 100, 0 my out put still 100, 0
df=pd.DataFrame(df.apply(lambda x : sorted(x,key= lambda s: ':' in s),1).tolist(),columns=df.columns)
Out[119]:
c a d b
0 0 10 22:58:00 23:27:00
1 10 17 23:03:00 23:39:00
2 100 10 22:58:00 23:27:00
3 10 17 23:03:00 23:39:00
np.sortnp.sort with pd.DataFrame constructor works for me:
df = pd.DataFrame(np.sort(df.astype(str)), columns=df.columns)
a b c d
0 0 10 22:58:00 23:27:00
1 10 17 23:03:00 23:39:00
2 0 10 22:58:00 23:27:00
3 10 17 23:03:00 23:39:00
More general, by checking which rows match to your date pattern and vice versa and then swapping these values with bfill or ffill:
match_pattern = df.apply(lambda x: x.str.match('\d{2}:\d{2}:\d{2}'))
numeric = df.where(~match_pattern).bfill(axis=1).dropna(how='any', axis=1)
dates = df.where(match_pattern).ffill(axis=1).dropna(how='any', axis=1)
df = pd.concat([numeric, dates], axis=1)
a b c d
0 0 10 22:58:00 23:27:00
1 10 17 23:03:00 23:39:00
2 0 0 23:27:00 23:27:00
3 10 10 23:39:00 23:39:00
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With