I have the following Pandas Dataframe in Python 2.7.
CODE:
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.rand(10,6),columns=list('ABCDEF'))
df.insert(0,'Category',['A','C','D','D','B','E','F','F','G','H'])
print df.groupby('Category').std()
Here is df
:
Category A B C D E F
A 0.500200 0.791039 0.498083 0.360320 0.965992 0.537068
C 0.295330 0.638823 0.133570 0.272600 0.647285 0.737942
D 0.912966 0.051288 0.055766 0.906490 0.078384 0.928538
D 0.416582 0.441684 0.605967 0.516580 0.458814 0.823692
B 0.714371 0.636975 0.153347 0.936872 0.000649 0.692558
E 0.639271 0.486151 0.860172 0.870838 0.831571 0.404813
F 0.375279 0.555228 0.020599 0.120947 0.896505 0.424233
F 0.952112 0.299520 0.150623 0.341139 0.186734 0.807519
G 0.384157 0.858391 0.278563 0.677627 0.998458 0.829019
H 0.109465 0.085861 0.440557 0.925500 0.767791 0.626924
I am looking to perform a GROUP_BY
and then calculate the average and standard deviation. The standard deviation is sometimes calculated after grouping over 1 row - this means dividing by N-1
will sometimes give division by 0
which will print NaN
.
Here is the output of the above code:
OUTPUT:
A B C D E F
Category
A NaN NaN NaN NaN NaN NaN
B NaN NaN NaN NaN NaN NaN
C NaN NaN NaN NaN NaN NaN
D 0.350996 0.276052 0.389051 0.275708 0.269004 0.074137
E NaN NaN NaN NaN NaN NaN
F 0.407882 0.180813 0.091941 0.155699 0.501884 0.271025
G NaN NaN NaN NaN NaN NaN
H NaN NaN NaN NaN NaN NaN
For the cases where I am performing the GROUP_BY
over 1 row, is there a way to skip the Standard Deviation and just return the value itself. For example, I am looking to get this:
DESIRED OUTPUT
A B C D E F
Category
A 0.500200 0.791039 0.498083 0.360320 0.965992 0.537068
B 0.714371 0.636975 0.153347 0.936872 0.000649 0.692558
C 0.295330 0.638823 0.133570 0.272600 0.647285 0.737942
D 0.350996 0.276052 0.389051 0.275708 0.269004 0.074137
E 0.639271 0.486151 0.860172 0.870838 0.831571 0.404813
F 0.407882 0.180813 0.091941 0.155699 0.501884 0.271025
G 0.384157 0.858391 0.278563 0.677627 0.998458 0.829019
H 0.109465 0.085861 0.440557 0.925500 0.767791 0.626924
Is it possible to do this with Pandas?
EDIT: To create the exact Pandas Dataframe above, select it, copy to clipboard and then use this:
import pandas as pd
df = pd.read_clipboard(index_col='Category')
print df
print df.groupby('Category').std()
Not exactly what was asked in the question, but if you wanted to avoid NaN
values, calculate the population standard deviation, specified with std(ddof=0)
:
>>> print(df.groupby('Category').std(ddof=0))
A B C D E F
Category
A 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
B 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
C 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
D 0.248192 0.195198 0.275101 0.194955 0.190215 0.052423
E 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
F 0.288417 0.127854 0.065012 0.110096 0.354885 0.191643
G 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
H 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
Note the different defaults for ddof
(Delta Degrees of Freedom):
DataFrame.std
has default ddof=1
for sample standard deviation (divisor: N − 1)numpy.std
has default ddof=0
for population standard deviation (divisor: N)If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With