Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Pandas Standard Deviation returns NaN

I have the following Pandas Dataframe in Python 2.7.

CODE:

import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.rand(10,6),columns=list('ABCDEF'))
df.insert(0,'Category',['A','C','D','D','B','E','F','F','G','H'])
print df.groupby('Category').std()

Here is df:

Category         A         B         C         D         E         F
       A  0.500200  0.791039  0.498083  0.360320  0.965992  0.537068
       C  0.295330  0.638823  0.133570  0.272600  0.647285  0.737942
       D  0.912966  0.051288  0.055766  0.906490  0.078384  0.928538
       D  0.416582  0.441684  0.605967  0.516580  0.458814  0.823692
       B  0.714371  0.636975  0.153347  0.936872  0.000649  0.692558
       E  0.639271  0.486151  0.860172  0.870838  0.831571  0.404813
       F  0.375279  0.555228  0.020599  0.120947  0.896505  0.424233
       F  0.952112  0.299520  0.150623  0.341139  0.186734  0.807519
       G  0.384157  0.858391  0.278563  0.677627  0.998458  0.829019
       H  0.109465  0.085861  0.440557  0.925500  0.767791  0.626924

I am looking to perform a GROUP_BY and then calculate the average and standard deviation. The standard deviation is sometimes calculated after grouping over 1 row - this means dividing by N-1 will sometimes give division by 0 which will print NaN.

Here is the output of the above code:

OUTPUT:

                A         B         C         D         E         F
Category                                                            
A              NaN       NaN       NaN       NaN       NaN       NaN
B              NaN       NaN       NaN       NaN       NaN       NaN
C              NaN       NaN       NaN       NaN       NaN       NaN
D         0.350996  0.276052  0.389051  0.275708  0.269004  0.074137
E              NaN       NaN       NaN       NaN       NaN       NaN
F         0.407882  0.180813  0.091941  0.155699  0.501884  0.271025
G              NaN       NaN       NaN       NaN       NaN       NaN
H              NaN       NaN       NaN       NaN       NaN       NaN

For the cases where I am performing the GROUP_BY over 1 row, is there a way to skip the Standard Deviation and just return the value itself. For example, I am looking to get this:

DESIRED OUTPUT

                 A         B         C         D         E         F
Category                                                            
A         0.500200  0.791039  0.498083  0.360320  0.965992  0.537068
B         0.714371  0.636975  0.153347  0.936872  0.000649  0.692558
C         0.295330  0.638823  0.133570  0.272600  0.647285  0.737942
D         0.350996  0.276052  0.389051  0.275708  0.269004  0.074137
E         0.639271  0.486151  0.860172  0.870838  0.831571  0.404813
F         0.407882  0.180813  0.091941  0.155699  0.501884  0.271025
G         0.384157  0.858391  0.278563  0.677627  0.998458  0.829019
H         0.109465  0.085861  0.440557  0.925500  0.767791  0.626924

Is it possible to do this with Pandas?

EDIT: To create the exact Pandas Dataframe above, select it, copy to clipboard and then use this:

import pandas as pd
df = pd.read_clipboard(index_col='Category')
print df
print df.groupby('Category').std()
like image 965
edesz Avatar asked Aug 21 '15 01:08

edesz


1 Answers

Not exactly what was asked in the question, but if you wanted to avoid NaN values, calculate the population standard deviation, specified with std(ddof=0):

>>> print(df.groupby('Category').std(ddof=0))
                 A         B         C         D         E         F
Category                                                            
A         0.000000  0.000000  0.000000  0.000000  0.000000  0.000000
B         0.000000  0.000000  0.000000  0.000000  0.000000  0.000000
C         0.000000  0.000000  0.000000  0.000000  0.000000  0.000000
D         0.248192  0.195198  0.275101  0.194955  0.190215  0.052423
E         0.000000  0.000000  0.000000  0.000000  0.000000  0.000000
F         0.288417  0.127854  0.065012  0.110096  0.354885  0.191643
G         0.000000  0.000000  0.000000  0.000000  0.000000  0.000000
H         0.000000  0.000000  0.000000  0.000000  0.000000  0.000000

Note the different defaults for ddof (Delta Degrees of Freedom):

  • Pandas: DataFrame.std has default ddof=1 for sample standard deviation (divisor: N − 1)
  • NumPy: numpy.std has default ddof=0 for population standard deviation (divisor: N)
like image 92
Mike T Avatar answered Sep 18 '22 15:09

Mike T