So, I used the answer from Put a 2d Array into a Pandas Series to put 2D numpy array to pandas series. In short, it is
a = np.zeros((5,2))
s = pd.Series(list(a))
Now, what is the cheapest way to convert that pandas Series back to 2D array?
If I try s.values
, I get array of arrays with object
dtype.
So far I tried np.vstack(s.values)
but it copies the data, of course.
I believe you need:
a = np.array(s.values.tolist())
print (a)
[[ 0. 0.]
[ 0. 0.]
[ 0. 0.]
[ 0. 0.]
[ 0. 0.]]
a = np.zeros((50000,2))
s = pd.Series(list(a))
In [131]: %timeit (np.vstack(s.values))
10 loops, best of 3: 107 ms per loop
In [132]: %timeit (np.array(s.values.tolist()))
10 loops, best of 3: 19.7 ms per loop
In [133]: %timeit (np.array(s.tolist()))
100 loops, best of 3: 19.6 ms per loop
But if transpose difference is small (but caching):
a = np.zeros((2,50000))
s = pd.Series(list(a))
#print (s)
In [159]: %timeit (np.vstack(s.values))
The slowest run took 23.31 times longer than the fastest. This could mean that an intermediate result is being cached.
10000 loops, best of 3: 55.7 µs per loop
In [160]: %timeit (np.array(s.values.tolist()))
The slowest run took 7.20 times longer than the fastest. This could mean that an intermediate result is being cached.
10000 loops, best of 3: 49.8 µs per loop
In [161]: %timeit (np.array(s.tolist()))
The slowest run took 7.31 times longer than the fastest. This could mean that an intermediate result is being cached.
10000 loops, best of 3: 62.6 µs per loop
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With