Whats the simplest way of selecting all rows from a panda dataframe, who's sym occurs exactly twice in the entire table? For example, in the table below, I would like to select all rows with sym in ['b','e'], since the value_counts for these symbols equal 2.
df=pd.DataFrame({'sym':['a', 'b', 'b', 'c', 'd','d','d','e','e'],'price':np.random.randn(9)})
price sym
0 -0.0129 a
1 -1.2940 b
2 1.8423 b
3 -0.7160 c
4 -2.3216 d
5 -0.0120 d
6 -0.5914 d
7 0.6280 e
8 0.5361 e
df.sym.value_counts()
Out[237]:
d 3
e 2
b 2
c 1
a 1
I think you can use groupby
by column sym
and filter
values with length == 2
:
print df.groupby("sym").filter(lambda x: len(x) == 2)
price sym
1 0.400157 b
2 0.978738 b
7 -0.151357 e
8 -0.103219 e
Second solution use isin
with boolean indexing:
s = df.sym.value_counts()
print s[s == 2].index
Index([u'e', u'b'], dtype='object')
print df[df.sym.isin(s[s == 2].index)]
price sym
1 0.400157 b
2 0.978738 b
7 -0.151357 e
8 -0.103219 e
And fastest solution with transform
and boolean indexing
:
print (df[df.groupby("sym")["sym"].transform('size') == 2])
price sym
1 -1.2940 b
2 1.8423 b
7 0.6280 e
8 0.5361 e
You can use map
, which should be faster than using groupby
and transform
:
df[df['sym'].map(df['sym'].value_counts()) == 2]
e.g.
%%timeit
df[df['sym'].map(df['sym'].value_counts()) == 2]
Out[1]:
1.83 ms ± 23.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%%timeit
df[df.groupby("sym")["sym"].transform('size') == 2]
Out[2]:
2.08 ms ± 41.3 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With