Here is a sample code.
df = pd.DataFrame(np.random.randn(10, 2), columns=list('AB'))
df['C'] = df.B.rolling(window=3)
Output:
A B C
0 -0.108897 1.877987 Rolling [window=3,center=False,axis=0]
1 -1.276055 -0.424382 Rolling [window=3,center=False,axis=0]
2 1.578561 -1.094649 Rolling [window=3,center=False,axis=0]
3 -0.443294 1.683261 Rolling [window=3,center=False,axis=0]
4 0.674124 0.281077 Rolling [window=3,center=False,axis=0]
5 0.587773 0.697557 Rolling [window=3,center=False,axis=0]
6 -0.258038 -1.230902 Rolling [window=3,center=False,axis=0]
7 -0.443269 0.647107 Rolling [window=3,center=False,axis=0]
8 0.347187 0.753585 Rolling [window=3,center=False,axis=0]
9 -0.369179 0.975155 Rolling [window=3,center=False,axis=0]
I want my 'C' column to be an array like [0.1231, -1.132, 0.8766]. I tried using rolling apply but in vain.
Expected Output:
A B C
0 -0.108897 1.877987 []
1 -1.276055 -0.424382 []
2 1.578561 -1.094649 [-1.094649, -0.424382, 1.877987]
3 -0.443294 1.683261 [1.683261, -1.094649, -0.424382]
4 0.674124 0.281077 [0.281077, 1.683261, -1.094649]
5 0.587773 0.697557 [0.697557, 0.281077, 1.683261]
6 -0.258038 -1.230902 [-1.230902, 0.697557, 0.281077]
7 -0.443269 0.647107 [0.647107, -1.230902, 0.697557]
8 0.347187 0.753585 [0.753585, 0.647107, -1.230902]
9 -0.369179 0.975155 [0.975155, 0.753585, 0.647107]
Since pandas 1.1
rolling objects are iterable.
For a list of lists:
df['C'] = [window.to_list() for window in df.B.rolling(window=3)]
For a Series of Series's do:
df['C'] = pd.Series(df.B.rolling(window=3))
Also checkout the rolling function for parameters.
You could use np.stride_tricks
:
import numpy as np
as_strided = np.lib.stride_tricks.as_strided
df
A B
0 -0.272824 -1.606357
1 -0.350643 0.000510
2 0.247222 1.627117
3 -1.601180 0.550903
4 0.803039 -1.231291
5 -0.536713 -0.313384
6 -0.840931 -0.675352
7 -0.930186 -0.189356
8 0.151349 0.522533
9 -0.046146 0.507406
win = 3 # window size
# https://stackoverflow.com/a/47483615/4909087
v = as_strided(df.B, (len(df) - (win - 1), win), (df.B.values.strides * 2))
v
array([[ -1.60635669e+00, 5.10129842e-04, 1.62711678e+00],
[ 5.10129842e-04, 1.62711678e+00, 5.50902812e-01],
[ 1.62711678e+00, 5.50902812e-01, -1.23129111e+00],
[ 5.50902812e-01, -1.23129111e+00, -3.13383794e-01],
[ -1.23129111e+00, -3.13383794e-01, -6.75352179e-01],
[ -3.13383794e-01, -6.75352179e-01, -1.89356194e-01],
[ -6.75352179e-01, -1.89356194e-01, 5.22532550e-01],
[ -1.89356194e-01, 5.22532550e-01, 5.07405549e-01]])
df['C'] = pd.Series(v.tolist(), index=df.index[win - 1:])
df
A B C
0 -0.272824 -1.606357 NaN
1 -0.350643 0.000510 NaN
2 0.247222 1.627117 [-1.606356691642917, 0.0005101298424200881, 1....
3 -1.601180 0.550903 [0.0005101298424200881, 1.6271167809032248, 0....
4 0.803039 -1.231291 [1.6271167809032248, 0.5509028122535129, -1.23...
5 -0.536713 -0.313384 [0.5509028122535129, -1.2312911105674484, -0.3...
6 -0.840931 -0.675352 [-1.2312911105674484, -0.3133837943758246, -0....
7 -0.930186 -0.189356 [-0.3133837943758246, -0.6753521794378446, -0....
8 0.151349 0.522533 [-0.6753521794378446, -0.18935619377656243, 0....
9 -0.046146 0.507406 [-0.18935619377656243, 0.52253255045267, 0.507...
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With