I have a dataframe like:
Year Month Value
2017 1 100
2017 2 1
2017 4 2
2018 3 88
2018 4 8
2019 5 87
2019 6 1
I'd the dataframe to return the Month and Value for each year where the value is the maximum:
year month value
2017 1 100
2018 3 88
2019 5 87
I've attempted something like df=df.groupby(["Year","Month"])['Value']).max()
however, it returns the full data set because each Year / Month pair is unique (i believe).
You can get the index where the top Value occurs with .groupby(...).idxmax()
and use that to index into the original dataframe:
In [28]: df.loc[df.groupby("Year")["Value"].idxmax()]
Out[28]:
Year Month Value
0 2017 1 100
3 2018 3 88
5 2019 5 87
Here is a solution that also handles duplicate possibility:
m = df.groupby('Year')['Value'].transform('max') == df['Value']
dfmax = df.loc[m]
Full example:
import pandas as pd
data = '''\
Year Month Value
2017 1 100
2017 2 1
2017 4 2
2018 3 88
2018 4 88
2019 5 87
2019 6 1'''
fileobj = pd.compat.StringIO(data)
df = pd.read_csv(fileobj, sep='\s+')
m = df.groupby('Year')['Value'].transform('max') == df['Value']
print(df[m])
Year Month Value
0 2017 1 100
3 2018 3 88
4 2018 4 88
5 2019 5 87
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With