In a column risklevels I want to replace Small with 1, Medium with 5 and High with 15. I tried:
dfm.replace({'risk':{'Small': '1'}},
{'risk':{'Medium': '5'}},
{'risk':{'High': '15'}})
But only the medium were replaced. What is wrong ?
Pandas replace multiple values in column replace. By using DataFrame. replace() method we will replace multiple values with multiple new strings or text for an individual DataFrame column. This method searches the entire Pandas DataFrame and replaces every specified value.
Replace Multiple Values in a Python List. There may be many times when you want to replace not just a single item, but multiple items. This can be done quite simply using the for loop method shown earlier.
Pandas DataFrame replace() Method The replace() method replaces the specified value with another specified value. The replace() method searches the entire DataFrame and replaces every case of the specified value.
Your replace format is off
In [21]: df = pd.DataFrame({'a':['Small', 'Medium', 'High']})
In [22]: df
Out[22]:
a
0 Small
1 Medium
2 High
[3 rows x 1 columns]
In [23]: df.replace({'a' : { 'Medium' : 2, 'Small' : 1, 'High' : 3 }})
Out[23]:
a
0 1
1 2
2 3
[3 rows x 1 columns]
In [123]: import pandas as pd
In [124]: state_df = pd.DataFrame({'state':['Small', 'Medium', 'High', 'Small', 'High']})
In [125]: state_df
Out[125]:
state
0 Small
1 Medium
2 High
3 Small
4 High
In [126]: replace_values = {'Small' : 1, 'Medium' : 2, 'High' : 3 }
In [127]: state_df = state_df.replace({"state": replace_values})
In [128]: state_df
Out[128]:
state
0 1
1 2
2 3
3 1
4 3
You could define a dict and call map
In [256]:
df = pd.DataFrame({'a':['Small', 'Medium', 'High']})
df
Out[256]:
a
0 Small
1 Medium
2 High
[3 rows x 1 columns]
In [258]:
vals_to_replace = {'Small':'1', 'Medium':'5', 'High':'15'}
df['a'] = df['a'].map(vals_to_replace)
df
Out[258]:
a
0 1
1 5
2 15
[3 rows x 1 columns]
In [279]:
val1 = [1,5,15]
df['risk'].update(pd.Series(val1))
df
Out[279]:
risk
0 1
1 5
2 15
[3 rows x 1 columns]
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With