Below is sample dataframe
>>> df = pd.DataFrame({'a': [1, 1, 1, 2, 2], 'b':[11, 22, 33, 44, 55]})
>>> df
a b
0 1 11
1 1 22
2 1 33
3 2 44
4 3 55
Now I wanted to update/replace b values that are matched on a column from other dict based on index
ex:
match = {1:[111, 222], 2:[444, 555]}
output:
a b
0 1 111
1 1 222
2 1 33 <-- ignores this bcz not enough values to replace in match dict for 1
3 2 444
4 3 555
Thanks in advance
Here's one way. The idea is to calculate a cumulative count by group and use this to filter rows. Use itertools.chain
to create a single array of values. Finally, use pd.DataFrame.loc
and Boolean indexing to set values.
from itertools import chain
count = df.groupby('a').cumcount() + 1
m1 = df['a'].isin(match)
m2 = count.le(df['a'].map(match).map(len))
values = list(chain.from_iterable(match.values()))
df.loc[m1 & m2, 'b'] = values
print(df)
a b
0 1 111
1 1 222
2 1 33
3 2 444
4 2 555
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With