I'm trying to convert the numbers in 'Avg. Session Duration'(HH:MM:SS) column into whole numbers (in seconds) in Pandas read_csv
module/function.
For instance, '0:03:26' would be 206 seconds after the conversion.
Input example:
Source Month Sessions Bounce Rate Avg. Session Duration
ABC.com 201501 408 26.47% 0:03:26
EFG.com 201412 398 31.45% 0:04:03
I wrote a function:
def time_convert(x):
times = x.split(':')
return (60*int(times[0])+60*int(times[1]))+int(times[2])
This function works just fine while simply passing '0:03:26' to the function. But when I was trying to create a new column 'Duration' by applying the function to another column in Pandas,
df = pd.read_csv('myfile.csv')
df['Duration'] = df['Avg. Session Duration'].apply(time_convert)
It returned an Error Message:
> --------------------------------------------------------------------------- AttributeError Traceback (most recent call
> last) <ipython-input-53-01e79de1cb39> in <module>()
> ----> 1 df['Avg. Session Duration'] = df['Avg. Session Duration'].apply(lambda x: x.split(':'))
>
> /Users/yumiyang/anaconda/lib/python2.7/site-packages/pandas/core/series.pyc
> in apply(self, func, convert_dtype, args, **kwds) 1991
> values = lib.map_infer(values, lib.Timestamp) 1992
> -> 1993 mapped = lib.map_infer(values, f, convert=convert_dtype) 1994 if len(mapped) and
> isinstance(mapped[0], Series): 1995 from
> pandas.core.frame import DataFrame
>
> /Users/yumiyang/anaconda/lib/python2.7/site-packages/pandas/lib.so in
> pandas.lib.map_infer (pandas/lib.c:52281)()
>
> <ipython-input-53-01e79de1cb39> in <lambda>(x)
> ----> 1 df['Avg. Session Duration'] = df['Avg. Session Duration'].apply(lambda x: x.split(':'))
>
> AttributeError: 'float' object has no attribute 'split'
I don't know why it says values of 'Avg. Session Duration' are float.
Data columns (total 7 columns):
Source 250 non-null object
Time 251 non-null object
Sessions 188 non-null object
Users 188 non-null object
Bounce Rate 188 non-null object
Avg. Session Duration 188 non-null object
% New Sessions 188 non-null object
dtypes: object(7)
Can someone help me figure out where the problem is?
df['Avg. Session Duration']
should be strings for your function to work.
df =pd.DataFrame({'time':['0:03:26']})
def time_convert(x):
h,m,s = map(int,x.split(':'))
return (h*60+m)*60+s
df.time.apply(time_convert)
This works fine for me.
The error means that the column is recognized as float, not string. Fix the way you read the data e.g.:
#!/usr/bin/env python
import sys
import pandas
def hh_mm_ss2seconds(hh_mm_ss):
return reduce(lambda acc, x: acc*60 + x, map(int, hh_mm_ss.split(':')))
df = pandas.read_csv('input.csv', sep=r'\s{2,}',
converters={'Avg. Session Duration': hh_mm_ss2seconds})
print(df)
Source Month Sessions Bounce Rate Avg. Session Duration
0 ABC.com 201501 408 26.47% 206
1 EFG.com 201412 398 31.45% 243
[2 rows x 5 columns]
You can convert time to seconds with time
and datetime
from standard python library:
import time, datetime
def convertTime(t):
x = time.strptime(t,'%H:%M:%S')
return str(int(datetime.timedelta(hours=x.tm_hour,minutes=x.tm_min,seconds=x.tm_sec).total_seconds()))
convertTime('0:03:26') # Output 206.0
convertTime('0:04:03') # Output 243.0
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With