After performing a groupby.sum() on a DataFrame I'm having some trouble trying to create my intended plot.

import pandas as pd
import numpy as np
np.random.seed(365)
rows = 100
data = {'Month': np.random.choice(['2014-01', '2014-02', '2014-03', '2014-04'], size=rows),
        'Code': np.random.choice(['A', 'B', 'C'], size=rows),
        'ColA': np.random.randint(5, 125, size=rows),
        'ColB': np.random.randint(0, 51, size=rows),}
df = pd.DataFrame(data)
     Month Code  ColA  ColB
0  2014-03    C    59    47
1  2014-01    A    24     9
2  2014-02    C    77    50
dfg = df.groupby(['Code', 'Month']).sum()
              ColA  ColB
Code Month              
A    2014-01   124   102
     2014-02   398   282
     2014-03   474   198
     2014-04   830   237
B    2014-01   477   300
     2014-02   591   167
     2014-03   522   192
     2014-04   367   169
C    2014-01   412   180
     2014-02   275   205
     2014-03   795   291
     2014-04   901   309
How can I create a subplot (kind='bar') for each Code, where the x-axis is the Month and the bars are ColA and ColB?
Creating a MultiIndex (hierarchical index) object A MultiIndex can be created from a list of arrays (using MultiIndex. from_arrays() ), an array of tuples (using MultiIndex. from_tuples() ), a crossed set of iterables (using MultiIndex. from_product() ), or a DataFrame (using MultiIndex.
I found the unstack(level) method to work perfectly, which has the added benefit of not needing a priori knowledge about how many Codes there are.
ax = dfg.unstack(level=0).plot(kind='bar', subplots=True, rot=0, figsize=(9, 7), layout=(2, 3)) plt.tight_layout()  
Using the following DataFrame ...

# using pandas version 0.14.1
from pandas import DataFrame
import pandas as pd
import matplotlib.pyplot as plt
data = {'ColB': {('A', 4): 3.0,
('C', 2): 0.0,
('B', 4): 51.0,
('B', 1): 0.0,
('C', 3): 0.0,
('B', 2): 7.0,
('Code', 'Month'): '',
('A', 3): 5.0,
('C', 1): 0.0,
('C', 4): 0.0,
('B', 3): 12.0},
'ColA': {('A', 4): 66.0,
('C', 2): 5.0,
('B', 4): 125.0,
('B', 1): 5.0,
('C', 3): 41.0,
('B', 2): 52.0,
('Code', 'Month'): '',
('A', 3): 22.0,
('C', 1): 14.0,
('C', 4): 51.0,
('B', 3): 122.0}}
df = DataFrame(data)
... you can plot the following (using cross-section):
f, a = plt.subplots(3,1)
df.xs('A').plot(kind='bar',ax=a[0])
df.xs('B').plot(kind='bar',ax=a[1])
df.xs('C').plot(kind='bar',ax=a[2])

One for A, one for B and one for C, x-axis: 'Month', the bars are ColA and ColB. Maybe this is what you are looking for.
seaborn can easily aggregate long form data from a dataframe without .groupby or .pivot_table.df, the easiest option is the convert it to a long form with pandas.DataFrame.melt, and then plot with seaborn.catplot, which is a high-level API for matplotlib.
estimator from mean to sum
'Month' column in the OP is a string type. In general, it's better to convert the column to datetime dtype with pd._to_datetime
python 3.8.11, pandas 1.3.2, matplotlib 3.4.2, seaborn 0.11.2seaborn.catplotimport seaborn as sns
dfm = df.melt(id_vars=['Month', 'Code'], var_name='Cols')
     Month Code  Cols  value
0  2014-03    C  ColA     59
1  2014-01    A  ColA     24
2  2014-02    C  ColA     77
3  2014-04    B  ColA    114
4  2014-01    C  ColA     67
# specify row and col to get a plot like that produced by the accepted answer
sns.catplot(kind='bar', data=dfm, col='Code', x='Month', y='value', row='Cols', order=sorted(dfm.Month.unique()),
            col_order=sorted(df.Code.unique()), estimator=sum, ci=None, height=3.5)

sns.catplot(kind='bar', data=dfm, col='Code', x='Month', y='value', hue='Cols', estimator=sum, ci=None,
            order=sorted(dfm.Month.unique()), col_order=sorted(df.Code.unique()))

pandas.DataFrame.plotpandas uses matplotlib and the default plotting backend.pandas.DataFrame.pivot_table instead of .groupby, because the resulting dataframe is in the correct shape, without the need to unstack.dfp = df.pivot_table(index='Month', columns='Code', values=['ColA', 'ColB'], aggfunc='sum')
dfp.plot(kind='bar', subplots=True, rot=0, figsize=(9, 7), layout=(2, 3))
plt.tight_layout()

If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With