I want to merge two dataframes on three columns: email, subject and timestamp. The timestamps between the dataframes differ and I therefore need to identify the closest matching timestamp for a group of email & subject.
Below is a reproducible example using a function for closest match suggested for this question.
import numpy as np
import pandas as pd
from pandas.io.parsers import StringIO
def find_closest_date(timepoint, time_series, add_time_delta_column=True):
# takes a pd.Timestamp() instance and a pd.Series with dates in it
# calcs the delta between `timepoint` and each date in `time_series`
# returns the closest date and optionally the number of days in its time delta
deltas = np.abs(time_series - timepoint)
idx_closest_date = np.argmin(deltas)
res = {"closest_date": time_series.ix[idx_closest_date]}
idx = ['closest_date']
if add_time_delta_column:
res["closest_delta"] = deltas[idx_closest_date]
idx.append('closest_delta')
return pd.Series(res, index=idx)
a = """timestamp,email,subject
2016-07-01 10:17:00,[email protected],subject3
2016-07-01 02:01:02,[email protected],welcome
2016-07-01 14:45:04,[email protected],subject3
2016-07-01 08:14:02,[email protected],subject2
2016-07-01 16:26:35,[email protected],subject4
2016-07-01 10:17:00,[email protected],subject3
2016-07-01 02:01:02,[email protected],welcome
2016-07-01 14:45:04,[email protected],subject3
2016-07-01 08:14:02,[email protected],subject2
2016-07-01 16:26:35,[email protected],subject4
"""
b = """timestamp,email,subject,clicks,var1
2016-07-01 02:01:14,[email protected],welcome,1,1
2016-07-01 08:15:48,[email protected],subject2,2,2
2016-07-01 10:17:39,[email protected],subject3,1,7
2016-07-01 14:46:01,[email protected],subject3,1,2
2016-07-01 16:27:28,[email protected],subject4,1,2
2016-07-01 10:17:05,[email protected],subject3,0,0
2016-07-01 02:01:03,[email protected],welcome,0,0
2016-07-01 14:45:05,[email protected],subject3,0,0
2016-07-01 08:16:00,[email protected],subject2,0,0
2016-07-01 17:00:00,[email protected],subject4,0,0
"""
Notice that for [email protected] the closest matched timestamp is 10:17:39, whereas for [email protected] the closest match is 10:17:05.
a = """timestamp,email,subject
2016-07-01 10:17:00,[email protected],subject3
2016-07-01 10:17:00,[email protected],subject3
"""
b = """timestamp,email,subject,clicks,var1
2016-07-01 10:17:39,[email protected],subject3,1,7
2016-07-01 10:17:05,[email protected],subject3,0,0
"""
df1 = pd.read_csv(StringIO(a), parse_dates=['timestamp'])
df2 = pd.read_csv(StringIO(b), parse_dates=['timestamp'])
df1[['closest', 'time_bt_x_and_y']] = df1.timestamp.apply(find_closest_date, args=[df2.timestamp])
df1
df3 = pd.merge(df1, df2, left_on=['email','subject','closest'], right_on=['email','subject','timestamp'],how='left')
df3
timestamp_x email subject closest time_bt_x_and_y timestamp_y clicks var1
2016-07-01 10:17:00 [email protected] subject3 2016-07-01 10:17:05 00:00:05 NaT NaN NaN
2016-07-01 02:01:02 [email protected] welcome 2016-07-01 02:01:03 00:00:01 NaT NaN NaN
2016-07-01 14:45:04 [email protected] subject3 2016-07-01 14:45:05 00:00:01 NaT NaN NaN
2016-07-01 08:14:02 [email protected] subject2 2016-07-01 08:15:48 00:01:46 2016-07-01 08:15:48 2.0 2.0
2016-07-01 16:26:35 [email protected] subject4 2016-07-01 16:27:28 00:00:53 2016-07-01 16:27:28 1.0 2.0
2016-07-01 10:17:00 [email protected] subject3 2016-07-01 10:17:05 00:00:05 2016-07-01 10:17:05 0.0 0.0
2016-07-01 02:01:02 [email protected] welcome 2016-07-01 02:01:03 00:00:01 2016-07-01 02:01:03 0.0 0.0
2016-07-01 14:45:04 [email protected] subject3 2016-07-01 14:45:05 00:00:01 2016-07-01 14:45:05 0.0 0.0
2016-07-01 08:14:02 [email protected] subject2 2016-07-01 08:15:48 00:01:46 NaT NaN NaN
2016-07-01 16:26:35 [email protected] subject4 2016-07-01 16:27:28 00:00:53 NaT NaN NaN
The result is wrong, mainly because the closest date is incorrect since it does not take into account email & subject.
The expected result is
Amending the function to give the closest timesstamps for a given email and subject would be helpful.
df1.groupby(['email','subject'])['timestamp'].apply(find_closest_date, args=[df1.timestamp])
But that gives an error as the function is not defined for a group object. What's the best way of doing this?
Notice that if you merge df1
and df2
on email
and subject
, then the result
has all the possible relevant timestamp pairings:
In [108]: result = pd.merge(df1, df2, how='left', on=['email','subject'], suffixes=['', '_y']); result
Out[108]:
timestamp email subject timestamp_y clicks var1
0 2016-07-01 10:17:00 [email protected] subject3 2016-07-01 10:17:39 1 7
1 2016-07-01 10:17:00 [email protected] subject3 2016-07-01 14:46:01 1 2
2 2016-07-01 02:01:02 [email protected] welcome 2016-07-01 02:01:14 1 1
3 2016-07-01 14:45:04 [email protected] subject3 2016-07-01 10:17:39 1 7
4 2016-07-01 14:45:04 [email protected] subject3 2016-07-01 14:46:01 1 2
5 2016-07-01 08:14:02 [email protected] subject2 2016-07-01 08:15:48 2 2
6 2016-07-01 16:26:35 [email protected] subject4 2016-07-01 16:27:28 1 2
7 2016-07-01 10:17:00 [email protected] subject3 2016-07-01 10:17:05 0 0
8 2016-07-01 10:17:00 [email protected] subject3 2016-07-01 14:45:05 0 0
9 2016-07-01 02:01:02 [email protected] welcome 2016-07-01 02:01:03 0 0
10 2016-07-01 14:45:04 [email protected] subject3 2016-07-01 10:17:05 0 0
11 2016-07-01 14:45:04 [email protected] subject3 2016-07-01 14:45:05 0 0
12 2016-07-01 08:14:02 [email protected] subject2 2016-07-01 08:16:00 0 0
13 2016-07-01 16:26:35 [email protected] subject4 2016-07-01 17:00:00 0 0
You could now take the absolute value of the difference in timestamps for each row:
result['diff'] = (result['timestamp_y'] - result['timestamp']).abs()
and then use
idx = result.groupby(['timestamp','email','subject'])['diff'].idxmin()
result = result.loc[idx]
to find the rows with the minimum difference for each group based on ['timestamp','email','subject']
.
import numpy as np
import pandas as pd
from pandas.io.parsers import StringIO
a = """timestamp,email,subject
2016-07-01 10:17:00,[email protected],subject3
2016-07-01 02:01:02,[email protected],welcome
2016-07-01 14:45:04,[email protected],subject3
2016-07-01 08:14:02,[email protected],subject2
2016-07-01 16:26:35,[email protected],subject4
2016-07-01 10:17:00,[email protected],subject3
2016-07-01 02:01:02,[email protected],welcome
2016-07-01 14:45:04,[email protected],subject3
2016-07-01 08:14:02,[email protected],subject2
2016-07-01 16:26:35,[email protected],subject4
"""
b = """timestamp,email,subject,clicks,var1
2016-07-01 02:01:14,[email protected],welcome,1,1
2016-07-01 08:15:48,[email protected],subject2,2,2
2016-07-01 10:17:39,[email protected],subject3,1,7
2016-07-01 14:46:01,[email protected],subject3,1,2
2016-07-01 16:27:28,[email protected],subject4,1,2
2016-07-01 10:17:05,[email protected],subject3,0,0
2016-07-01 02:01:03,[email protected],welcome,0,0
2016-07-01 14:45:05,[email protected],subject3,0,0
2016-07-01 08:16:00,[email protected],subject2,0,0
2016-07-01 17:00:00,[email protected],subject4,0,0
"""
df1 = pd.read_csv(StringIO(a), parse_dates=['timestamp'])
df2 = pd.read_csv(StringIO(b), parse_dates=['timestamp'])
result = pd.merge(df1, df2, how='left', on=['email','subject'], suffixes=['', '_y'])
result['diff'] = (result['timestamp_y'] - result['timestamp']).abs()
idx = result.groupby(['timestamp','email','subject'])['diff'].idxmin()
result = result.loc[idx].drop(['timestamp_y','diff'], axis=1)
result = result.sort_index()
print(result)
yields
timestamp email subject clicks var1
0 2016-07-01 10:17:00 [email protected] subject3 1 7
2 2016-07-01 02:01:02 [email protected] welcome 1 1
4 2016-07-01 14:45:04 [email protected] subject3 1 2
5 2016-07-01 08:14:02 [email protected] subject2 2 2
6 2016-07-01 16:26:35 [email protected] subject4 1 2
7 2016-07-01 10:17:00 [email protected] subject3 0 0
9 2016-07-01 02:01:02 [email protected] welcome 0 0
11 2016-07-01 14:45:04 [email protected] subject3 0 0
12 2016-07-01 08:14:02 [email protected] subject2 0 0
13 2016-07-01 16:26:35 [email protected] subject4 0 0
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With