Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Pandas: Merge data frames on datetime index

I have the following two dataframes that I have set date to DatetimeIndex df.set_index(pd.to_datetime(df['date']), inplace=True) and would like to merge or join on date:

df.head(5)
        catcode_amt type    feccandid_amt   amount
date                
1915-12-31  A5000   24K     H6TX08100   1000
1916-12-31  T6100   24K     H8CA52052   500
1954-12-31  H3100   24K     S8AK00090   1000
1985-12-31  J7120   24E     H8OH18088   36
1997-12-31  z9600   24K     S6ND00058   2000
    
    
d.head(5)
         catcode_disp disposition   feccandid_disp  bills
date                
2007-12-31  A0000   support     S4HI00011               1
2007-12-31  A1000   oppose      S4IA00020', 'P20000741  1
2007-12-31  A1000   support     S8MT00010               1
2007-12-31  A1500   support     S6WI00061               2
2007-12-31  A1600   support     S4IA00020', 'P20000741  3

I have tried the following two methods but both return a MemoryError:

df.join(d, how='right')

I use the code below on dataframes that don't have date set to index.

merge=pd.merge(df,d, how='inner', on='date')
like image 934
Collective Action Avatar asked Mar 29 '16 19:03

Collective Action


People also ask

Can you merge on index?

Merging Dataframes by index of both the dataframes As both the dataframe contains similar IDs on the index. So, to merge the dataframe on indices pass the left_index & right_index arguments as True i.e. Both the dataframes are merged on index using default Inner Join.

Can you merge multiple DataFrames in Pandas at once?

Pandas' merge and concat can be used to combine subsets of a DataFrame, or even data from different files. join function combines DataFrames based on index or column. Joining two DataFrames can be done in multiple ways (left, right, and inner) depending on what data must be in the final DataFrame.


Video Answer


3 Answers

You can add parameters left_index=True and right_index=True if you need merge by indexes in function merge:

merge=pd.merge(df,d, how='inner', left_index=True, right_index=True)

Sample (first value of index in d was changed for matching):

print df
           catcode_amt type feccandid_amt  amount
date                                             
1915-12-31       A5000  24K     H6TX08100    1000
1916-12-31       T6100  24K     H8CA52052     500
1954-12-31       H3100  24K     S8AK00090    1000
1985-12-31       J7120  24E     H8OH18088      36
1997-12-31       z9600  24K     S6ND00058    2000

print d
           catcode_disp disposition            feccandid_disp  bills
date                                                                
1997-12-31        A0000     support                 S4HI00011    1.0
2007-12-31        A1000      oppose  S4IA00020', 'P20000741 1    NaN
2007-12-31        A1000     support                 S8MT00010    1.0
2007-12-31        A1500     support                 S6WI00061    2.0
2007-12-31        A1600     support  S4IA00020', 'P20000741 3    NaN

merge=pd.merge(df,d, how='inner', left_index=True, right_index=True)
print merge
           catcode_amt type feccandid_amt  amount catcode_disp disposition  \
date                                                                         
1997-12-31       z9600  24K     S6ND00058    2000        A0000     support   

           feccandid_disp  bills  
date                              
1997-12-31      S4HI00011    1.0  

Or you can use concat:

print pd.concat([df,d], join='inner', axis=1)

date                                                                         
1997-12-31       z9600  24K     S6ND00058    2000        A0000     support   

           feccandid_disp  bills  
date                              
1997-12-31      S4HI00011    1.0  

EDIT: EdChum is right:

I add duplicates to DataFrame df (last 2 values in index):

print df
           catcode_amt type feccandid_amt  amount
date                                             
1915-12-31       A5000  24K     H6TX08100    1000
1916-12-31       T6100  24K     H8CA52052     500
1954-12-31       H3100  24K     S8AK00090    1000
2007-12-31       J7120  24E     H8OH18088      36
2007-12-31       z9600  24K     S6ND00058    2000

print d
           catcode_disp disposition            feccandid_disp  bills
date                                                                
1997-12-31        A0000     support                 S4HI00011    1.0
2007-12-31        A1000      oppose  S4IA00020', 'P20000741 1    NaN
2007-12-31        A1000     support                 S8MT00010    1.0
2007-12-31        A1500     support                 S6WI00061    2.0
2007-12-31        A1600     support  S4IA00020', 'P20000741 3    NaN

merge=pd.merge(df,d, how='inner', left_index=True, right_index=True)
print merge
           catcode_amt type feccandid_amt  amount catcode_disp disposition  \
date                                                                         
2007-12-31       J7120  24E     H8OH18088      36        A1000      oppose   
2007-12-31       J7120  24E     H8OH18088      36        A1000     support   
2007-12-31       J7120  24E     H8OH18088      36        A1500     support   
2007-12-31       J7120  24E     H8OH18088      36        A1600     support   
2007-12-31       z9600  24K     S6ND00058    2000        A1000      oppose   
2007-12-31       z9600  24K     S6ND00058    2000        A1000     support   
2007-12-31       z9600  24K     S6ND00058    2000        A1500     support   
2007-12-31       z9600  24K     S6ND00058    2000        A1600     support   

                      feccandid_disp  bills  
date                                         
2007-12-31  S4IA00020', 'P20000741 1    NaN  
2007-12-31                 S8MT00010    1.0  
2007-12-31                 S6WI00061    2.0  
2007-12-31  S4IA00020', 'P20000741 3    NaN  
2007-12-31  S4IA00020', 'P20000741 1    NaN  
2007-12-31                 S8MT00010    1.0  
2007-12-31                 S6WI00061    2.0  
2007-12-31  S4IA00020', 'P20000741 3    NaN  
like image 178
jezrael Avatar answered Oct 16 '22 20:10

jezrael


It looks like your dates are your indices, in which case you would want to merge on the index, not column. If you have two dataframes, df_1 and df_2:

df_1.merge(df_2, left_index=True, right_index=True, how='inner')

like image 7
dmb Avatar answered Oct 16 '22 19:10

dmb


I ran into similar problems. You most likely have a lot of NaTs.
I removed all my NaTs and then performed the join and was able to join it.

df = df[df['date'].notnull() == True].set_index('date')
d = d[d['date'].notnull() == True].set_index('date')
df.join(d, how='right')
like image 2
user1887071 Avatar answered Oct 16 '22 20:10

user1887071