Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Pandas mapping to TRUE/FALSE as String, not Boolean

When I try to convert some columns in a pandas dataframe from '0' and '1' to 'TRUE' and 'FALSE', pandas automatically detects dtype as boolean. I want to keep dtype as string, with the strings 'TRUE' and 'FALSE'.

See code below:

booleanColumns = pandasDF.select_dtypes(include=[bool]).columns.values.tolist()
booleanDictionary = {'1': 'TRUE', '0': 'FALSE'}

pandasDF.to_string(columns = booleanColumns)

for column in booleanColumns:
    pandasDF[column].map(booleanDictionary)

Unfortunately, python automatically converts dtype to boolean with the last operation. How can I prevent this?

like image 678
Dendrobates Avatar asked Mar 14 '17 14:03

Dendrobates


People also ask

How do you convert a boolean column to a string in Python?

Convert bool to string: str() You can convert True and False to strings 'True' and 'False' with str() .

How do you replace true and false with 0 and 1?

You can multiply the return Boolean values (TRUE or FALSE) by 1, and then the TRUE will change to 1, and FALSE to 0.

Is boolean a panda?

Pandas DataFrame bool() MethodThe bool() method returns a boolean value, True or False, reflecting the value of the DataFrame. This method will only work if the DataFrame has only 1 value, and that value must be either True or False, otherwise the bool() method will return an error.


1 Answers

If need replace boolean values True and False:

booleandf = pandasDF.select_dtypes(include=[bool])
booleanDictionary = {True: 'TRUE', False: 'FALSE'}

for column in booleandf:
    pandasDF[column] = pandasDF[column].map(booleanDictionary)

Sample:

pandasDF = pd.DataFrame({'A':[True,False,True],
                   'B':[4,5,6],
                   'C':[False,True,False]})

print (pandasDF)
       A  B      C
0   True  4  False
1  False  5   True
2   True  6  False

booleandf = pandasDF.select_dtypes(include=[bool])
booleanDictionary = {True: 'TRUE', False: 'FALSE'}

#loop by df is loop by columns, same as for column in booleandf.columns:
for column in booleandf:
    pandasDF[column] = pandasDF[column].map(booleanDictionary)

print (pandasDF)
       A  B      C
0   TRUE  4  FALSE
1  FALSE  5   TRUE
2   TRUE  6  FALSE

EDIT:

Simplier solution with replace by dict:

booleanDictionary = {True: 'TRUE', False: 'FALSE'}
pandasDF = pandasDF.replace(booleanDictionary)
print (pandasDF)
       A  B      C
0   TRUE  4  FALSE
1  FALSE  5   TRUE
2   TRUE  6  FALSE
like image 181
jezrael Avatar answered Oct 27 '22 00:10

jezrael