I have a dataframe that looks like this:
data.head()
Out[2]:
Area Area Id Variable Name Variable Id Year \
0 Argentina 9 Conservation agriculture area 4454 1982
1 Argentina 9 Conservation agriculture area 4454 1987
2 Argentina 9 Conservation agriculture area 4454 1992
3 Argentina 9 Conservation agriculture area 4454 1997
4 Argentina 9 Conservation agriculture area 4454 2002
Value Symbol Md
0 2.0
1 6.0
2 500.0
That I would like to pivot so that Variable Name
is the columns, Area
and Year
are the index and Value
are the values. The most intuitive way to me is using:
data.pivot(index=['Area', 'Year'], columns='Variable Name', values='Value)
However I get the error:
Traceback (most recent call last):
File "C:\Users\patri\Miniconda3\lib\site-packages\IPython\core\interactiveshell.py", line 2862, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-4-4c786386b703>", line 1, in <module>
pd.concat(data_list).pivot(index=['Area', 'Year'], columns='Variable Name', values='Value')
File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\frame.py", line 3853, in pivot
return pivot(self, index=index, columns=columns, values=values)
File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\reshape\reshape.py", line 377, in pivot
index=MultiIndex.from_arrays([index, self[columns]]))
File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\series.py", line 250, in __init__
data = SingleBlockManager(data, index, fastpath=True)
File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\internals.py", line 4117, in __init__
fastpath=True)
File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\internals.py", line 2719, in make_block
return klass(values, ndim=ndim, fastpath=fastpath, placement=placement)
File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\internals.py", line 1844, in __init__
placement=placement, **kwargs)
File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\internals.py", line 115, in __init__
len(self.mgr_locs)))
ValueError: Wrong number of items passed 119611, placement implies 2
How should I interpret this? I've also tried another way:
data.set_index(['Area', 'Variable Name', 'Year']).loc[:, 'Value'].unstack('Variable Name')
to try to get the same result, but I get this error:
Traceback (most recent call last):
File "C:\Users\patri\Miniconda3\lib\site-packages\IPython\core\interactiveshell.py", line 2862, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-5-222325ea01e1>", line 1, in <module>
pd.concat(data_list).set_index(['Area', 'Variable Name', 'Year']).loc[:, 'Value'].unstack('Variable Name')
File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\series.py", line 2028, in unstack
return unstack(self, level, fill_value)
File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\reshape\reshape.py", line 458, in unstack
fill_value=fill_value)
File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\reshape\reshape.py", line 110, in __init__
self._make_selectors()
File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\reshape\reshape.py", line 148, in _make_selectors
raise ValueError('Index contains duplicate entries, '
ValueError: Index contains duplicate entries, cannot reshape
Is there something wrong with the data? I've confirmed that there are no duplicate combinations of Area
, Variable Name
, and Year
in any row of the dataframe, so I don't think there should be any duplicate entries but I could be wrong. How can I convert from long to wide format given that both of these methods are not currently working? I've checked answers here and here, but they are both cases where some type I aggregation is involved.
I've tried using pivot_table
like so:
data.pivot_table(index=['Area', 'Year'], columns='Variable Name', values='Value')
but I think some type of aggregation is being done and there are a lot of missing values in the dataset which leads to this error:
Traceback (most recent call last):
File "C:\Users\patri\Miniconda3\lib\site-packages\IPython\core\interactiveshell.py", line 2862, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-7-77b28d2f0dbb>", line 1, in <module>
pd.concat(data_list).pivot_table(index=['Area', 'Year'], columns='Variable Name', values='Value')
File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\reshape\pivot.py", line 136, in pivot_table
agged = grouped.agg(aggfunc)
File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\groupby.py", line 4036, in aggregate
return super(DataFrameGroupBy, self).aggregate(arg, *args, **kwargs)
File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\groupby.py", line 3468, in aggregate
result, how = self._aggregate(arg, _level=_level, *args, **kwargs)
File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\base.py", line 435, in _aggregate
**kwargs), None
File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\base.py", line 391, in _try_aggregate_string_function
return f(*args, **kwargs)
File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\groupby.py", line 1037, in mean
return self._cython_agg_general('mean', **kwargs)
File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\groupby.py", line 3354, in _cython_agg_general
how, alt=alt, numeric_only=numeric_only)
File "C:\Users\patri\Miniconda3\lib\site-packages\pandas\core\groupby.py", line 3425, in _cython_agg_blocks
raise DataError('No numeric types to aggregate')
pandas.core.base.DataError: No numeric types to aggregate
I think you need first convert column Value
to numeric and then use pivot_table
with default aggregate function mean
:
#if all float data saved as strings
data['Value'] = data['Value'].astype(float)
#if some bad data like strings and first method return value error
data['Value'] = pd.to_numeric(data['Value'], errors='coerce')
data.pivot_table(index=['Area', 'Year'], columns='Variable Name', values='Value')
Or:
data.groupby(['Area', 'Variable Name', 'Year'])[ 'Value'].mean().unstack('Variable Name')
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With