I have a dataframe of categories and amounts. Categories can be nested into sub categories an infinite levels using a colon separated string. I wish to sort it by descending amount. But in hierarchical type fashion like shown.
How I need it sorted
CATEGORY AMOUNT
Transport 5000
Transport : Car 4900
Transport : Train 100
Household 1100
Household : Utilities 600
Household : Utilities : Water 400
Household : Utilities : Electric 200
Household : Cleaning 100
Household : Cleaning : Bathroom 75
Household : Cleaning : Kitchen 25
Household : Rent 400
Living 250
Living : Other 150
Living : Food 100
EDIT: The data frame:
pd.DataFrame({
"category": ["Transport", "Transport : Car", "Transport : Train", "Household", "Household : Utilities", "Household : Utilities : Water", "Household : Utilities : Electric", "Household : Cleaning", "Household : Cleaning : Bathroom", "Household : Cleaning : Kitchen", "Household : Rent", "Living", "Living : Other", "Living : Food"],
"amount": [5000, 4900, 100, 1100, 600, 400, 200, 100, 75, 25, 400, 250, 150, 100]
})
Note: this is the order I want it. It may be in any arbitrary order before the sort.
EDIT2: If anyone looking for a similar solution I posted the one I settled on here: How to sort dataframe in pandas by value in hierarchical category structure
One way could be to first str.split
the category column.
df_ = df['category'].str.split(' : ', expand=True)
print (df_.head())
0 1 2
0 Transport None None
1 Transport Car None
2 Transport Train None
3 Household None None
4 Household Utilities None
Then get the column amount and what you want is to get the maximum amount per group based on:
You can do this with groupby.transform
with max
, and you concat each column created.
s = df['amount']
l_cols = list(df_.columns)
dfa = pd.concat([s.groupby([df_[col] for col in range(0, lv+1)]).transform('max')
for lv in l_cols], keys=l_cols, axis=1)
print (dfa)
0 1 2
0 5000 NaN NaN
1 5000 4900.0 NaN
2 5000 100.0 NaN
3 1100 NaN NaN
4 1100 600.0 NaN
5 1100 600.0 400.0
6 1100 600.0 200.0
7 1100 100.0 NaN
8 1100 100.0 75.0
9 1100 100.0 25.0
10 1100 400.0 NaN
11 250 NaN NaN
12 250 150.0 NaN
13 250 100.0 NaN
Now you just need to sort_values
on all columns in the right order on first 0, then 1, then 2..., get the index and use loc to order df in the expected way
dfa = dfa.sort_values(l_cols, na_position='first', ascending=False)
dfs = df.loc[dfa.index] #here you can reassign to df directly
print (dfs)
category amount
0 Transport 5000
1 Transport : Car 4900
2 Transport : Train 100
3 Household 1100
4 Household : Utilities 600
5 Household : Utilities : Water 400
6 Household : Utilities : Electric 200
10 Household : Rent 400 #here is the one difference with this data
7 Household : Cleaning 100
8 Household : Cleaning : Bathroom 75
9 Household : Cleaning : Kitchen 25
11 Living 250
12 Living : Other 150
13 Living : Food 100
I packaged @Ben. T's answer into a more generic function, hopefully this is clearer to read!
EDIT: I have made changes to the function to group by columns in order rather than one by one to address potential issues noted by @Ben. T in the comments.
import pandas as pd
def category_sort_df(df, sep, category_col, numeric_col, ascending=False):
'''Sorts dataframe by nested categories using `sep` as the delimiter for `category_col`.
Sorts numeric columns in descending order by default.
Returns a copy.'''
df = df.copy()
try:
to_sort = pd.to_numeric(df[numeric_col])
except ValueError:
print(f'Column `{numeric_col}` is not numeric!')
raise
categories = df[category_col].str.split(sep, expand=True)
# Strips any white space before and after sep
categories = categories.apply(lambda x: x.str.split().str[0], axis=1)
levels = list(categories.columns)
to_concat = []
for level in levels:
# Group by columns in order rather than one at a time
level_by = [df_[col] for col in range(0, level+1)]
gb = to_sort.groupby(level_by)
to_concat.append(gb.transform('max'))
dfa = pd.concat(to_concat, keys=levels, axis=1)
ixs = dfa.sort_values(levels, na_position='first', ascending=False).index
df = df.loc[ixs].copy()
return df
Using Python 3.7.3, pandas 0.24.2
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With