I have created an HDFStore.
The HDFStore contains a group df
which is a table with 2 columns.
The first column is a string
and second column is DateTime
(which will be in sorted order).
The Store has been created using the following method:
from numpy import ndarray
import random
import datetime
from pandas import DataFrame, HDFStore
def create(n):
mylist = ['A' * 4, 'B' * 4, 'C' * 4, 'D' * 4]
data = []
for i in range(n):
data.append((random.choice(mylist),
datetime.datetime.now() - datetime.timedelta(minutes=i)))
data_np = ndarray(len(data), dtype=[
('fac', 'U6'), ('ts', 'datetime64[us]')])
data_np[:] = data
df = DataFrame(data_np)
return df
def create_patches(n, nn):
for i in range(n):
yield create(nn)
df = create_patches(100, 1000000)
store = HDFStore('check.hd5')
for each in df:
store.append('df', each, index=False, data_columns=True, format = 'table')
store.close()
Once the HDF5 file is created, i'm querying the table using the following method:
In [1]: %timeit store.select('df', ['ts>Timestamp("2016-07-12 10:00:00")'])
1 loops, best of 3: 13.2 s per loop
So, basically this is taking 13.2 seconds, then I added an index to this column using
In [2]: store.create_table_index('df', columns=['ts'], kind='full')
And then I again did the same query, this time I got the following:-
In [3]: %timeit store.select('df', ['ts>Timestamp("2016-07-12 10:00:00")'])
1 loops, best of 3: 12 s per loop
From the above, it seems to me there isn't a significant improvement in the performance. So, my question is, what else can I do here to make my query faster, or is there something I'm doing wrong?
I think your columns has already been indexed when you specified data_columns=True
...
See this demo:
In [39]: df = pd.DataFrame(np.random.randint(0,100,size=(10, 3)), columns=list('ABC'))
In [40]: fn = 'c:/temp/x.h5'
In [41]: store = pd.HDFStore(fn)
In [42]: store.append('table_no_dc', df, format='table')
In [43]: store.append('table_dc', df, format='table', data_columns=True)
In [44]: store.append('table_dc_no_index', df, format='table', data_columns=True, index=False)
the data_columns
wasn't specified, so only index is indexed:
In [45]: store.get_storer('table_no_dc').group.table
Out[45]:
/table_no_dc/table (Table(10,)) ''
description := {
"index": Int64Col(shape=(), dflt=0, pos=0),
"values_block_0": Int32Col(shape=(3,), dflt=0, pos=1)}
byteorder := 'little'
chunkshape := (3276,)
autoindex := True
colindexes := {
"index": Index(6, medium, shuffle, zlib(1)).is_csi=False}
data_columns=True
- all data columns have been indexed:
In [46]: store.get_storer('table_dc').group.table
Out[46]:
/table_dc/table (Table(10,)) ''
description := {
"index": Int64Col(shape=(), dflt=0, pos=0),
"A": Int32Col(shape=(), dflt=0, pos=1),
"B": Int32Col(shape=(), dflt=0, pos=2),
"C": Int32Col(shape=(), dflt=0, pos=3)}
byteorder := 'little'
chunkshape := (3276,)
autoindex := True
colindexes := {
"C": Index(6, medium, shuffle, zlib(1)).is_csi=False,
"A": Index(6, medium, shuffle, zlib(1)).is_csi=False,
"index": Index(6, medium, shuffle, zlib(1)).is_csi=False,
"B": Index(6, medium, shuffle, zlib(1)).is_csi=False}
data_columns=True, index=False
- we have data columns information, but no indexes for them:
In [47]: store.get_storer('table_dc_no_index').group.table
Out[47]:
/table_dc_no_index/table (Table(10,)) ''
description := {
"index": Int64Col(shape=(), dflt=0, pos=0),
"A": Int32Col(shape=(), dflt=0, pos=1),
"B": Int32Col(shape=(), dflt=0, pos=2),
"C": Int32Col(shape=(), dflt=0, pos=3)}
byteorder := 'little'
chunkshape := (3276,)
colindexes
- shows the list of indexed columns in the examples above
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With