I'd like to generate a set of groups based on a boolean OR criterion in pandas. A group consists of members that match on column A OR column B.
For example, in this dataframe:
df = pd.DataFrame([[1,1],[2,2],[2,3],[2,4],[3,3],[4,5]], columns = ['A','B'])
A B
0 1 1
1 2 2
2 2 3
3 2 4
4 3 3
5 4 5
Because rows 1, 2 and 3 match on column A, and 2 and 4 match on column B, I'd like the id values to be:
A B id
0 1 1 0
1 2 2 1
2 2 3 1
3 2 4 1
4 3 3 1
5 4 5 2
I can't find any solution short of creating an NxN scipy graph with the connections, and using scipy.sparse.csgraph.connected_components. Are there any more straightforward options?
Notice I think this is network problem , so we do with networkx
import networkx as nx
G=nx.from_pandas_edgelist(df, 'A', 'B')
l=list(nx.connected_components(G))
l
[{1}, {2, 3}]
from itertools import chain
l=[dict.fromkeys(y,x)for x,y in enumerate(l)]#create the list of dict for later map
d=dict(chain(*map(dict.items,l)))# flatten the list of dict to one dict
df['ID']=df.B.map(d)
df
A B ID
0 1 1 0
1 2 2 1
2 2 3 1
3 3 3 1
Update
s1=df.A.astype('category').cat.codes.sort_values()
s2=df.B.astype('category').cat.codes.sort_values()
s=((s1==s1.shift())|(s2==s2.shift())).eq(False).cumsum()
s
#df['new']=s
Out[25]:
0 1
1 2
2 2
3 2
4 2
5 3
dtype: int32+
Thanks to @W-B for putting me on the right lines. Here's a more general answer that works for >2 columns and where the values are not related across columns.
import pandas as pd
import networkx as nx
from itertools import chain, combinations
columns = ['A','B','C']
df = pd.DataFrame([[1,1,1],[2,2,2],[2,3,3],[2,4,4],[3,3,4],[4,5,5]], columns = columns)
# make columns unique, so that values in any column are not treated as equivalent to values in another
# if you don't want to overwrite values, create new columns instead
for col in df.columns:
df[col] = str(col)+df[col].astype(str)
colPairs = list(combinations(columns, 2)) # we could match on a subset of column pairs instead
G = nx.compose_all([nx.from_pandas_edgelist(df, colPair[0], colPair[1]) for colPair in colPairs])
l=list(nx.connected_components(G))
l=[dict.fromkeys(y,x)for x,y in enumerate(l)]
d=dict(chain(*map(dict.items,l)))
df['ID']=df.B.map(d)
print(df)
A B C ID
0 A1 B1 C1 0
1 A2 B2 C2 1
2 A2 B3 C3 1
3 A2 B4 C4 1
4 A3 B3 C4 1
5 A4 B5 C5 2
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With