Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

pandas groupby transform custom function

Tags:

python

pandas

Is it possible to do a groupby transform with custom functions?

data = {
        'a':['a1','a2','a3','a4','a5'],
        'b':['b1','b1','b2','b2','b1'],
        'c':[55,44.2,33.3,-66.5,0],
        'd':[10,100,1000,10000,100000],
        }

import pandas as pd
df = pd.DataFrame.from_dict(data)

df['e'] = df.groupby(['b'])['c'].transform(sum) #this works as expected
print (df)
#    a   b     c       d     e
#0  a1  b1  55.0      10  99.2
#1  a2  b1  44.2     100  99.2
#2  a3  b2  33.3    1000 -33.2
#3  a4  b2 -66.5   10000 -33.2
#4  a5  b1   0.0  100000  99.2

def custom_calc(x, y):
    return (x * y)

#obviously wrong code here
df['e'] = df.groupby(['b'])['c'].transform(custom_calc(df['c'], df['d'])) 

As we can see from the above example, what I want is to explore the possibility of being able to pass in a custom function into .transform().

I am aware that .apply() exists, but I want to find out if it is possible to use .transform() exclusively.

More importantly, I want to understand how to formulate a proper function that can be passed into .transform() for it to apply correctly.

P.S. Currently, I know default functions like 'count', sum, 'sum', etc works.

like image 882
ycx Avatar asked Jan 07 '19 18:01

ycx


1 Answers

One way I like to see what is happening is by creating a small custom function and printing out what is passed and its type. Then, you can see you have to work with.

def f(x):
    print(type(x))
    print('\n')
    print(x)
    print(x.index)
    return df.loc[x.index,'d']*x

df['f'] = df.groupby('b')['c'].transform(f)
print(df)

#Output from print statements in function
<class 'pandas.core.series.Series'>


0    55.0
1    44.2
4     0.0
Name: b1, dtype: float64
Int64Index([0, 1, 4], dtype='int64')
<class 'pandas.core.series.Series'>


2    33.3
3   -66.5
Name: b2, dtype: float64
Int64Index([2, 3], dtype='int64')
#End output from print statements in custom function

    a   b     c       d     e         f
0  a1  b1  55.0      10  99.2     550.0
1  a2  b1  44.2     100  99.2    4420.0
2  a3  b2  33.3    1000 -33.2   33300.0
3  a4  b2 -66.5   10000 -33.2 -665000.0
4  a5  b1   0.0  100000  99.2       0.0

Here, I am transforming on column 'c' but I make an "extranal" call to the dataframe object in my custom function to get 'd'.

You can also pass the "external" to be used as an argument like this:

def f(x, col):
    return df.loc[x.index, col]*x

df['g'] = df.groupby('b')['c'].transform(f, col='d')

print(df)

Output:

    a   b     c       d     e         f         g
0  a1  b1  55.0      10  99.2     550.0     550.0
1  a2  b1  44.2     100  99.2    4420.0    4420.0
2  a3  b2  33.3    1000 -33.2   33300.0   33300.0
3  a4  b2 -66.5   10000 -33.2 -665000.0 -665000.0
4  a5  b1   0.0  100000  99.2       0.0       0.0
like image 156
Scott Boston Avatar answered Sep 19 '22 13:09

Scott Boston