I have a dataframe say like this
>>> df = pd.DataFrame({'user_id':['a','a','s','s','s'], 'session':[4,5,4,5,5], 'revenue':[-1,0,1,2,1]}) >>> df revenue session user_id 0 -1 4 a 1 0 5 a 2 1 4 s 3 2 5 s 4 1 5 s
And each value of session and revenue represents a kind of type, and I want to count the number of each kind say the number of revenue=-1
and session=4
of user_id=a
is 1.
And I found simple call count()
function after groupby()
can't output the result I want.
>>> df.groupby('user_id').count() revenue session user_id a 2 2 s 3 3
How can I do that?
You seem to want to group by several columns at once:
df.groupby(['revenue','session','user_id'])['user_id'].count()
should give you what you want
df.value_counts
is available!From pandas 1.1, this will be my recommended method for counting the number of rows in groups (i.e., the group size). To count the number of non-nan rows in a group for a specific column, check out the accepted answer.
Old
df.groupby(['A', 'B']).size() # df.groupby(['A', 'B'])['C'].count()
New [✓]
df.value_counts(subset=['A', 'B'])
Note that size
and count
are not identical, the former counts all rows per group, the latter counts non-null rows only. See this other answer of mine for more.
pd.__version__ # '1.1.0.dev0+2004.g8d10bfb6f' df = pd.DataFrame({'num_legs': [2, 4, 4, 6], 'num_wings': [2, 0, 0, 0]}, index=['falcon', 'dog', 'cat', 'ant']) df num_legs num_wings falcon 2 2 dog 4 0 cat 4 0 ant 6 0
df.value_counts(subset=['num_legs', 'num_wings'], sort=False) num_legs num_wings 2 2 1 4 0 2 6 0 1 dtype: int64
Compare this output with
df.groupby(['num_legs', 'num_wings'])['num_legs'].size() num_legs num_wings 2 2 1 4 0 2 6 0 1 Name: num_legs, dtype: int64
It's also faster if you don't sort the result:
%timeit df.groupby(['num_legs', 'num_wings'])['num_legs'].count() %timeit df.value_counts(subset=['num_legs', 'num_wings'], sort=False) 640 µs ± 28.2 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each) 568 µs ± 6.88 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With