Assume I have a dataframe of the form:
>>> df = pd.DataFrame([['2012', 'A', 1], ['2012', 'B', 2], ['2011', 'A', 3],
['2011', 'B', 2]],
columns=['branch_year', 'branch_name', 'employee_id'])
branch_year branch_name employee_id
0 2012 A 1
1 2012 B 2
2 2011 A 3
3 2011 B 2
How can I combine columns branch_year and branch_name so that they have a parent column branch -- and ideally renaming them to get rid of branch_ prefix.
branch branch employee_id
year name
0 2012 A 1
1 2012 B 2
2 2011 A 3
3 2011 B 2
The end goal is to create a list of dictionaries of the form:
[
{
"employeed_id": 1,
"branch": {
"name": "A",
"year": "2012"
}
},
{...}
]
You can apply a function to each row and turn the result into a list:
def to_nested_dict(row):
return {'employee_id': row.employee_id,
'branch': {'year': row.branch_year, 'name': row.branch_name}}
list(df.apply(to_nested_dict, axis=1))
This preserves the original order of the rows:
[{'branch': {'name': 'A', 'year': '2012'}, 'employee_id': 1},
{'branch': {'name': 'B', 'year': '2012'}, 'employee_id': 2},
{'branch': {'name': 'A', 'year': '2011'}, 'employee_id': 3},
{'branch': {'name': 'B', 'year': '2011'}, 'employee_id': 2}]
Programmatic approach nested on column names that have underscores:
def to_nested_dict(row):
res = {}
for col in row.index:
outer_key, inner_key = col.split('_')
outer = res.setdefault(outer_key, {})
outer[inner_key] = row[col]
return res
list(df.apply(to_nested_dict, axis=1))
Result:
[{'branch': {'name': 'A', 'year': '2012'}, 'employee': {'id': 1}},
{'branch': {'name': 'B', 'year': '2012'}, 'employee': {'id': 2}},
{'branch': {'name': 'A', 'year': '2011'}, 'employee': {'id': 3}},
{'branch': {'name': 'B', 'year': '2011'}, 'employee': {'id': 2}}]
Not pretty, but it gets what you want using groupby:
lst = []
for k,g in pd.groupby(df, by=['branch_name','branch_year']):
d = {'employee_id': int(g['employee_id']), 'branch': {'name': k[0], 'year': k[1]}}
lst.append(d)
lst
[{'branch': {'name': 'A', 'year': '2011'}, 'employee_id': 3},
{'branch': {'name': 'A', 'year': '2012'}, 'employee_id': 1},
{'branch': {'name': 'B', 'year': '2011'}, 'employee_id': 2},
{'branch': {'name': 'B', 'year': '2012'}, 'employee_id': 2}]
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With