I'm trying to figure out how to take a dataframe representing players in a game, the dataframe has unique users and records of each day the particular user has been active.
I am trying to get the average playtime and average moves for each week in the various users lifetime.
(Week is defined by a user's first record, i.e. if a user's first record is 3rd of January, their 1st week starts then and the 2nd week start the 10th of January).
Example
userid                          date          secondsPlayed   movesMade
++/acsbP2NFC2BvgG1BzySv5jko=    2016-04-28    413.88188       85
++/acsbP2NFC2BvgG1BzySv5jko=    2016-05-01    82.67343        15
++/acsbP2NFC2BvgG1BzySv5jko=    2016-05-05    236.73809       39
++/acsbP2NFC2BvgG1BzySv5jko=    2016-05-10    112.69112       29
++/acsbP2NFC2BvgG1BzySv5jko=    2016-05-11    211.42790       44
-----------------------------------CONT----------------------------------
++/8ij1h8378h123123koF3oer1    2016-05-05     200.73809       11
++/8ij1h8378h123123koF3oer1    2016-05-10     51.69112        14
++/8ij1h8378h123123koF3oer1    2016-05-14     65.42790        53
The end result for this would be the following table:
userid                          date        secondsPlayed_w movesMade_w
++/acsbP2NFC2BvgG1BzySv5jko=    2016-04-28    496.55531       100
++/acsbP2NFC2BvgG1BzySv5jko=    2016-05-05    236.73809       68    
-----------------------------------CONT----------------------------------
++/8ij1h8378h123123koF3oer1    2016-05-05     252.42921       25    
++/8ij1h8378h123123koF3oer1    2016-05-12     65.42790        53
Failed attempt #1:
So far I've tried doing a lot of different things, but the most useful dataframe I've managed to create was the following:
    df_grouped = df.groupby('userid').apply(lambda x: x.set_index('date').resample('1D').first().fillna(0))
    df_result = df_grouped.groupby(level=0)['secondsPlayed'].apply(lambda x: x.rolling(min_periods=1, window=7).mean()).reset_index(name='secondsPlayed_week')
Which is a very slow and wasteful computation, but nonetheless can be used as a intermediate step.
userid                          date        secondsPlayed_w
++/acsbP2NFC2BvgG1BzySv5jko=    2016-04-28  4.138819e+02
++/acsbP2NFC2BvgG1BzySv5jko=    2016-04-29  2.069409e+02    
++/acsbP2NFC2BvgG1BzySv5jko=    2016-04-30  1.379606e+02    
++/acsbP2NFC2BvgG1BzySv5jko=    2016-05-01  1.241388e+02    
++/acsbP2NFC2BvgG1BzySv5jko=    2016-05-02  9.931106e+01    
++/acsbP2NFC2BvgG1BzySv5jko=    2016-05-03  8.275922e+01    
++/acsbP2NFC2BvgG1BzySv5jko=    2016-05-04  7.093647e+01    
++/acsbP2NFC2BvgG1BzySv5jko=    2016-05-05  4.563022e+01
Failed attempt #2:
df_result = (df .reset_index() .set_index("date") .groupby(pd.Grouper(freq='W'))).agg({"userid":"first", "secondsPlayed":"sum", "movesUsed":"sum"}) .reset_index()
Which gave me the following dataframe, which has the fault of not being grouped by userids (the NaN problem is easily resolved).
date        userid                        secondsPlayed_w   movesMade_w
2016-04-10  +1kexX0Yk2Su639WaRKARcwjq5g=    2.581356e+03    320
2016-04-17  +1kexX0Yk2Su639WaRKARcwjq5g=    4.040738e+03    615
2016-04-24   NaN                             0.000000e+00   0
2016-05-01  ++RBPf9KdTK6pTN+lKZHDLCXg10=    1.644130e+05    17453
2016-05-08  ++DndI7do036eqYh9iW7vekAnx0=    3.775905e+05    31997
2016-05-15  ++NjKpr/vyxNCiYcmeFK9qSqD9o=    4.993430e+05    34706
2016-05-22  ++RBPf9KdTK6pTN+lKZHDLCXg10=    3.940408e+05    23779
Immediate thought:
Can this problem be solved by using a groupby that groups by two columns. But I'm not at all sure how to go about that with this particular problem.
You can create a newid help groupby
df.date=pd.to_datetime(df.date)
df['Newweeknumber']=df.groupby('userid').date.diff().dt.days.cumsum().fillna(0)//7# get the week number by the first date of each id
df.groupby(['userid','Newweeknumber']).agg({"userid":"first", "secondsPlayed":"sum", "movesMade":"sum"})
Try
df1 = pd.DataFrame(index=pd.date_range('2015-04-24', periods = 50)).assign(value=1)
df2 = pd.DataFrame(index=pd.date_range('2015-04-28', periods = 50)).assign(value=1)
df3 = pd.concat([df1,df2], keys=['A','B'])
df3 = df3.rename_axis(['user','date']).reset_index()
df3.groupby('user').apply(lambda x: x.resample('7D', on='date').sum())
Output:
                 value
user date             
A    2015-04-24      7
     2015-05-01      7
     2015-05-08      7
     2015-05-15      7
     2015-05-22      7
     2015-05-29      7
     2015-06-05      7
     2015-06-12      1
B    2015-04-28      7
     2015-05-05      7
     2015-05-12      7
     2015-05-19      7
     2015-05-26      7
     2015-06-02      7
     2015-06-09      7
     2015-06-16      1
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With