I have the following DataFrame:
item response
1 A
1 A
1 B
2 A
2 A
I want to add a column with the most given response for an item. which should result in:
item response mostGivenResponse
1 A A
1 A A
1 B A
2 C C
2 C C
I tried something like this:
df["responseCount"] = df.groupby(["ItemCode", "Response"])["Response"].transform("count")
df["mostGivenResponse"] = df.groupby(['ItemCode'])['responseCount'].transform(max)
But mostGivenResponse is now the count of the response in stead of the response itself.
There is pd.Series.mode
:
df.groupby('item').response.transform(pd.Series.mode)
Out[28]:
0 A
1 A
2 A
3 C
4 C
Name: response, dtype: object
Use value_counts
and return first index value:
df["responseCount"] = (df.groupby("item")["response"]
.transform(lambda x: x.value_counts().index[0]))
print (df)
item response responseCount
0 1 A A
1 1 A A
2 1 B A
3 2 C C
4 2 C C
Or collections.Counter.most_common
:
from collections import Counter
df["responseCount"] = (df.groupby("item")["response"]
.transform(lambda x: Counter(x).most_common(1)[0][0]))
print (df)
item response responseCount
0 1 A A
1 1 A A
2 1 B A
3 2 C C
4 2 C C
EDIT:
Problem is with one or multiple NaN
s only groups, solution is filter with if-else
:
print (df)
item response
0 1 A
1 1 A
2 2 NaN
3 2 NaN
4 3 NaN
def f(x):
s = x.value_counts()
print (s)
A 2
Name: 1, dtype: int64
Series([], Name: 2, dtype: int64)
Series([], Name: 3, dtype: int64)
#return np.nan if s.empty else s.index[0]
return np.nan if len(s) == 0 else s.index[0]
df["responseCount"] = df.groupby("item")["response"].transform(f)
print (df)
item response responseCount
0 1 A A
1 1 A A
2 2 NaN NaN
3 2 NaN NaN
4 3 NaN NaN
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With