I'm considering a Pandas Dataframe. I would like to find an efficient way in which the second Dataframe is created.
import pandas as pd
data = {"column":[0,1,2,0,1,2,0]}   
df = pd.DataFrame(data) 
column
0
1
2
0
1
2
0
column0  column1 column2
true      false     false
false      true     false
false      false     true
true      false     false
false      true     false
false      false     true
true      false     false
                This is a get_dummies problem, but you will additionally need to specify dtype=bool to get columns of bools:
pd.get_dummies(df['column'], dtype=bool)                                                                                                  
       0      1      2
0   True  False  False
1  False   True  False
2  False  False   True
3   True  False  False
4  False   True  False
5  False  False   True
6   True  False  False
pd.get_dummies(df['column'], dtype=bool).dtypes                                                                                          
0    bool
1    bool
2    bool
dtype: object
# carbon copy of expected output
dummies = pd.get_dummies(df['column'], dtype=bool)
dummies[:] = np.where(pd.get_dummies(df['column'], dtype=bool), 'true', 'false')  
dummies.add_prefix('column')
  column0 column1 column2
0    true   false   false
1   false    true   false
2   false   false    true
3    true   false   false
4   false    true   false
5   false   false    true
6    true   false   false
                        If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With