I have a dataframe with roughly 100M rows, (1.4Gb in memory)
Given the input:
df.head()
Out[1]:
id term x
0 1 A 3
1 1 B 2
2 2 A 1
3 2 B 1
4 2 F 1
5 2 G 1
6 2 Z 1
7 3 K 1
8 3 M 1
9 3 N 1
10 3 Q 1
11 3 R 1
12 3 Z 1
13 4 F 1
I'd like to retrieve the index of the first row for each id. Example:
Out[1]:
id first_idx
0 1 0
1 2 2
2 3 7
2 4 13
My current approach is incredibly slow:
first_row = {}
last_id = None
first_row = None
#iterate over all rows
for idx,r in bow.iterrows():
cid = r['id']
if cid != last_id: #is this an ID we haven't seen before?
first_row[cid] = idx
last_id = cid
Any advice would be a huge help.
Use DataFrameGroupBy.agg
:
df = df.index.to_series().groupby(df['id']).first().reset_index(name='x')
print (df)
id x
0 1 0
1 2 2
2 3 7
3 4 13
If want also last index values:
df = df.index.to_series().groupby(df['id']).agg(['first','last']).reset_index()
print (df)
id first last
0 1 0 1
1 2 2 6
2 3 7 12
3 4 13 13
Approach #1 With np.unique
-
idx = np.unique(df.id.values, return_index=1)[1]
To get the last indices for each ID
, simply use flipped
version and subtract from dataframe's length -
len(df)-np.unique(df.id.values[::-1], return_index=1)[1]-1
id
col already being sortedApproach #2-A We can use slicing
for noticeable performance boost, as we would be avoiding sorting -
a = df.id.values
idx = np.concatenate(([0],np.flatnonzero(a[1:] != a[:-1])+1))
Approach #2-B With masking
(better for lots of id numbers)
a = df.id.values
mask = np.concatenate(([True],a[1:] != a[:-1]))
idx = np.flatnonzero(mask)
For the last index :
np.flatnonzero(np.concatenate((a[1:] != a[:-1],[True])))
Approach #3 For sequential numbers, we can use np.bincount
-
a = df.id.values
idx = np.bincount(a).cumsum()[:-1]
Sample run -
In [334]: df
Out[334]:
id term x
0 1 A 3
1 1 B 2
2 2 A 1
3 2 B 1
4 2 F 1
5 2 G 1
6 2 Z 1
7 3 K 1
8 3 M 1
9 3 N 1
10 3 Q 1
11 3 R 1
12 3 Z 1
13 4 F 1
In [335]: idx = np.unique(df.id.values, return_index=1)[1]
In [336]: idx
Out[336]: array([ 0, 2, 7, 13])
If you need the output in a dataframe -
In [337]: a = df.id.values
In [338]: pd.DataFrame(np.column_stack((a[idx], idx)), columns=[['id','first_idx']])
Out[338]:
id first_idx
0 1 0
1 2 2
2 3 7
3 4 13
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With