I have a pandas pivot table that looks a little like this:
C bar foo
A B
one A -1.154627 -0.243234
three A -1.327977 0.243234
B 1.327977 -0.079051
C -0.832506 1.327977
two A 1.327977 -0.128534
B 0.835120 1.327977
C 1.327977 0.838040
I'd like to be able to filter out rows where column A has fewer than 2 rows in column B, so that the table above would filter A = one:
C bar foo
A B
three A -1.327977 0.243234
B 1.327977 -0.079051
C -0.832506 1.327977
two A 1.327977 -0.128534
B 0.835120 1.327977
C 1.327977 0.838040
How can I do this?
In one line:
In [64]: df[df.groupby(level=0).bar.transform(lambda x: len(x) >= 2).astype('bool')]
Out[64]:
bar foo
two A 0.944908 0.701687
B -0.204075 0.713141
C 0.730844 -0.022302
three A 1.263489 -1.382653
B 0.124444 0.907667
C -2.407691 -0.773040
In the upcoming release of pandas (11.1), the new filter
method achieves this faster and more intuitively:
In [65]: df.groupby(level=0).filter(lambda x: len(x['bar']) >= 2)
Out[65]:
bar foo
three A 1.263489 -1.382653
B 0.124444 0.907667
C -2.407691 -0.773040
two A 0.944908 0.701687
B -0.204075 0.713141
C 0.730844 -0.022302
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With