I have a data frame that looks like this:
df = pd.DataFrame([
{'id': 123, 'date': '2016-01-01', 'is_local': True },
{'id': 123, 'date': '2017-01-01', 'is_local': False },
{'id': 124, 'date': '2016-01-01', 'is_local': True },
{'id': 124, 'date': '2017-01-01', 'is_local': True }
])
df.date = df.date.astype('datetime64[ns]')
I want to get a list of all the IDs for which is_local
was True at the start of 2016, but False at the start of 2017. I've started by grouping by ID:
gp = df.groupby('id')
Then I've tried this just to filter by the second of these conditions (as a way of getting started), but it's returning all the groups:
gp.apply(lambda x: ~x.is_local & (x.date > '2016-12-31'))
How can I filter in the way I need?
d1 = df.set_index(['id', 'date']).is_local.unstack()
d1.index[d1['2016-01-01'] & ~d1['2017-01-01']].tolist()
[123]
Another way of doing this is through pivoting:
In [24]: ids_by_dates = df.pivot(index='id', columns='date',values='is_local')
In [25]: ids_by_dates['2016-01-01'] & ~ids_by_dates['2017-01-01']
Out[25]:
id
123 True
124 False
You can try using the datetime module from datetime library and pass multiple conditions for the dataframe
from datetime import datetime
df = pd.DataFrame([
{'id': 123, 'date': '2016-01-01', 'is_local': True },
{'id': 123, 'date': '2017-01-01', 'is_local': False },
{'id': 124, 'date': '2016-01-01', 'is_local': True },
{'id': 124, 'date': '2017-01-01', 'is_local': True }
])
df.date = df.date.astype('datetime64[ns]')
Use multiple conditions for slicing out the required dataframe
a = df[(df.is_local==True) & (df.date<datetime(2016,12,31) & (df.date>datetime(2015,12,31))]
b = df[(df.is_local==False) & (df.date<datetime(2017,12,31)) & (df.date>datetime(2016,12,31))]
Use pandas concatenate later
final_df = pd.concat((a,b))
will output you rows 1 and 2
date id is_local
2 2016-01-01 124 True
1 2017-01-01 123 False
In single line as follows
final_df = pd.concat((df[(df.is_local==True) & (df.date<datetime(2016,12,31) & (df.date>datetime(2015,12,31))], df[(df.is_local==False) & (df.date<datetime(2017,12,31)) & (df.date>datetime(2016,12,31))]))
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With